featured-heme-chloro Algal Products

Chlorophyll Rich Diet for Good health – Reality or…

There is a piece of scientific evidence to support the claim that chlorophyll improves hemoglobin. Chlorophyll has a very similar structure to hemoglobin, which is an essential functional part of red blood cells that carries oxygen. Because of this similarity, chlorophyll is thought to contribute to hemoglobin production and increases RBC count in the blood. There are many different ways to get chlorophyll into the body, i.e. through nutritional supplements, vegetable juice, and eating green leafy vegetables.

The research behind chlorophyll improving hemoglobin dates back to the 1930s. Dr. Ann Wigmore, from Boston, was one of the first to suggest that chlorophyll could help improve hemoglobin levels. She noticed that people who ate a lot of dark green leafy vegetables had higher hemoglobin levels. Some laboratory experiments and animal trials also suggest the same. Many other researchers all over the world are trying to find out exactly what triggers hemoglobin production on the consumption of a chlorophyll-rich diet.

source: PharmaTutor.org

Chlorophyll

Chlorophyll is a green pigment found in plants that is essential to the process of photosynthesis. It absorbs light from the sun and uses it to convert carbon dioxide and water into glucose and oxygen. Plants use glucose for energy and release oxygen as a by-product. Chlorophyll is what gives plants their green color. It is also found in algae and cyanobacteria for the same function as that of plants. Apart from photosynthesis chlorophyll also helps to protect plant cells from damage by ultraviolet light called photoinhibition of the cells.

Molecular Structure: The chlorophyll molecule is a large, complex molecule composed of a porphyrin ring. The porphyrin ring of chlorophyll is what gives the molecule its distinctive green color. Its structure includes a long carbon-based “tail” and a large “head” group. The head group contains a magnesium atom at its center.

hemoglobin-and-chlorophyll

How Chlorophyll is similar to hemoglobin?

  • Chlorophyll and hemoglobin both have four pyrrole rings.
  • Both chlorophyll and hemoglobin have a central metal ion (Mg2+ for chlorophyll, Fe2+ for hemoglobin) that is essential for their function.
  • The structure of chlorophyll is very similar to that of hemoglobin, with the only major difference being the type of atom that is bonded to the central metal ion.
  • The chlorophyll molecule is distinctly planar, while hemoglobin is more threedimensional in structure.
  • Due to these significant structural similarities, it is considered that chlorophyll must be having a direct contribution to hemoglobin synthesis.
  • But there are iron-rich plastids (chloroplast) that must be helpful in providing the required iron to the human body on the consumption of green leafy vegetables. Iron is the essential metal ion that actively contributes to hemoglobin production by supplying hemoglobin’s structural component.
featured-heme-chloro

Apart from these important health contribution by chlorophyll it also has many other health benefits

Health Benefits of Chlorophyll

ROS (reactive oxygen species) in the human body: Chlorophyll is a potent antioxidant that can neutralize the damaging effects of ROS. ROS (reactive oxygen species) are a group of chemically reactive molecules that contain oxygen. They have been shown to play a role in a number of human diseases, including cancer and heart disease. They can damage cells and contribute to the development of chronic inflammation.

Cancer Treatment:  Chlorophyll has been shown to have some cancer-fighting properties. Researchers found that Chlorophyll can form a close bond to carcinogenic chemicals called Aflatoxins. When they bind, the Chlorophyll helps to block the absorption of the Aflatoxins (cancer-causing agents) in the intestines.
It is not yet known if chlorophyll can help treat cancer in people. More research is needed to learn more about this possible treatment. Chlorophyll may also help to protect healthy cells from damage caused by radiation therapy.

Improved digestion: Chlorophyll can help stimulate the production of enzymes that aid in digestion and absorption of nutrients.

Detoxification: Chlorophyll may help to remove toxins and heavy metals from the body. It is often used as a natural detoxifier in supplements and juices.

Boosted immunity:  Chlorophyll may help to fight infection and diseases, and boost the immune system. It can also help to reduce inflammation.

Industrial Application of Chlorophyll

In Pharmaceutical
  • Chlorophyll along with many other medicinal components from Alfalfa (Medicago sativa) and silkworm excrement are typically used in medicines.
  • Application of chlorophyll in foul odor removal: When chlorophyll is applied to foul odors, it acts as a natural deodorizer. This magnesium atom is surrounded by four nitrogen atoms. These nitrogen atoms have a strong affinity for sulfur-containing compounds, which are the main cause of foul odors. When the chlorophyll molecule comes in contact with these sulfur-containing compounds, the nitrogen atoms bind to the sulfur atoms, effectively neutralizing the odor.
  • Also, Chlorophyll can be used as a natural dye in the pharmaceutical industry. It can be used in color capsules, tablets, and other pharmaceutical products.
Food and Cosmetics
  • Chlorophyll is a natural colorant that also can be used to add color to food and cosmetics. It is safe and non-toxic and it can be used to create a wide range of colors.
  • Anti-aging remedy: A gel containing chlorophyll to the skin reduced signs of photoaging, which is aging that results from sun exposure. 
  • Acne treatment: A gel containing chlorophyll helped reduce facial acne and large, visible pores.

In the end, we learned that chlorophyll is basically a photosynthetic color pigment that has some structural similarities with hemoglobin. But, it may not be directly contributing to producing hemoglobin after dietary consumption. Rather, the chloroplast which is a photosynthetic plastid contains a high amount of iron, magnesium, zinc, etc. that must be having a significant role in providing metal ions to animals. Chloroplast is the essential iron-rich plant cell organelle and is important for treating iron deficiency and increasing hemoglobin production. Chlorophyll has always been thought to be the essential component of plants that might have a role in hemoglobin production due to its structural similarities, but scientific evidence is not enough to prove it. Therefore, it can be concluded that not chlorophyll as such but chloroplast whole along with chlorophyll, which helps to treat iron deficiency and improves the production of hemoglobin and red blood cells. 

content-microalgae Algal Products

Microalgae for Wastewater Treatment

What is Wastewater?

Any water that has been contaminated by human interventions is considered wastewater. Wastewater basically originates from domestic, industrial, commercial, or agricultural applications. It also includes surface runoff or stormwater and any sewer input or sewer infiltration is also referred to as wastewater.

Types of Wastewaters

Sewage: sewage is wastewater that develops and comes from domestically produced wastes like toilets, food, laundry, and other wastes. The contaminants that originated in sewage water are from domestic sewage and suspended and dissolved pollutants.

Non-sewage: Non-sewage refers to all other varieties of wastewater other than sewage. It contains wastewater originating from industrial washing applications, rainwater, stormwater, and industrial effluent. It doesn’t have any additional dangerous pathogens like sewage.

Water Pollutants and their Origin

Pollutants are materials, present in concentrations that could harm creatures (including people, plants, and animals) or exceed environmental quality standards.

pollutant
Types of Pollutants:
  • Organic and biological Pollutants: Organic pollution is a type of chemical pollution caused by persistent organic pollutants as they are difficult to remove or degrade once released into the environment, such as Dichlorodiphenyltrichloroethane (DDT). Other than organic pollutants biological pollutants originate from biological material that includes liquid manure, sewage treatment sludge, etc.
  • Inorganic Pollutants: Inorganic pollutants are the compounds of inorganic by-products arising from various industrial applications that include, chemical, pharmaceutical, textiles and dyeing industries, paints, etc. Examples of inorganic metal pollutants are arsenic, cadmium, lead, mercury, chromium, aluminum, etc.

The major water pollutants are biological matter like feces, and human and animal body fluids containing bacteria, viruses, and parasites. And industrial pollutants include insecticides, pharmaceuticals, plastics, toxic chemicals, fertilizers, and pesticides.

Depending upon the application of industrial products their origin of water contamination can be categorized into centralized and distributed sources. Whereas a point-source contaminant, like a sewage discharge or outfall pipe, enters the water from a single conduit or channel.

So, whatever the source, all type of wastewater requires treatment before releasing it into the natural water body. Most commercial and industrial manufacturing plants strictly need to process their wastewater and recycle it, despite it many continuing to produce untreated wastewater. This leads to an issue of a rise in synthetic compounds in wastewater that is harmful to nature. To remove pollutants from wastewater, effective wastewater treatment solutions are mandatory.

What is Wastewater treatment?

The process of transforming wastewater or used water into water that may be safely released back into the environment is known as wastewater treatment. The methods and procedures utilized to clean up contaminated water are referred to as industrial wastewater treatment.

content-microalgae
Conventional Ways of Wastewater Treatment
  1. Primary (or Physical) Treatment: To remove any suspended sand particles from wastewater, a physical procedure (Sedimentation, Aeration, and Filtration) is used. Wastewater’s velocity is decreased to allow all of the suspended particles to fall to the ground as a result of gravity. The settling substance is referred to as sludge or bio soil.
  2. Secondary (or Biological) Treatment: It is a biological process (Aerobic, Anaerobic, and Composing) that uses bacteria, algae, and microorganisms to take up the organic material in the wastewater. All of the organic contaminants are consumed by microbes, who then transform them into carbon dioxide, water, or energy for their further development or as byproducts.
  3. Tertiary (or Chemical) Treatment: The pollutants or biological agents mostly pathogens that remain after secondary treatment are treated in tertiary treatment. Use of oxidizing agents like Chlorine liquid, Ozon gas, and UV rays, that kill most of the pathogen and make water free of pathogenic contamination. Through the employment of stronger and more sophisticated treatment systems, wastewater effluent is made even cleaner during this treatment process.

Conventional wastewater treatments eliminated major pollutants but they are unable to remove dissolved nutrients and toxic metals. This wastewater also contains nitrogen, phosphorus, ammonia, and bacteria. This often acts as a source of NPK contamination in a local water body. These pollutants lead to the eutrophication of waterbody once released into the environment which deteriorates the local water ecosystem.

Additionally, the traditional wastewater treatment method now has many drawbacks. Including increased chemical needs, high maintenance costs, sludge disposal issues, higher space and energy needs, and degradability issues. Therefore finding additional or even alternative options with conventional methods is very essential. 

Why Microalgae for Wastewater Treatment?

Credit: Euronews Next

In order to handle wastewater treatment ponds naturally and economically, natural methods like employing microalgae cultures are now being studied. In terms of its capacity to remove NPK nutrients, coliform bacteria, and heavy metals, the microalgal approach competes favorably with conventional treatments. Microalgae are so effective at absorbing pollutants that other bacterial species can’t do.  Microalgal species like Chlorella, Scenedesmus, Nannochloropsis, Phormedium, Botryococcus, Synechocystis, Spirogyra, etc., are well known for their effective wastewater treatment abilities.

Microalgae, serve as an indicator of water quality, with some strains proliferating in polluted water while others thrive in unpolluted water. Also, Algae can be used in wastewater treatment for a range of purposes. Some of these are used for the removal of coliform bacteria, reduction of both chemical and biochemical oxygen demand, and also removal of heavy metals.

Bio-treatment with microalgae is particularly attractive because of their photosynthetic capabilities, converting solar energy into useful biomasses and incorporating polluting NPK nutrients.   Wastewater treatment by microalgae generates biomass. It could be utilized for developing various other products, such as fertilizers and biofuels. 

Need Help?