algal biofilms Algal Biotechnology

Unveiling the Hidden World of Algal Biofilms: Nature’s Microscopic…

Biofilms are clusters of microorganisms that adhere to each other and a solid surface where water is present for extended periods. In nature, people often refer to photosynthetic biofilms as periphytic or algal biofilms, which consist mostly of algae, cyanobacteria, and heterotrophic bacteria living in symbiosis. In addition to these primary members, biofilms often contain additional microorganisms like flagellates and desmids and non-biological elements like silt, sand, and minerals.

Algae, which are chlorophyll-containing organisms, are widespread and lack traditional roots, stems, and leaves (Kesaano M, Sims RC et al., 2014). Biofilms are intricate communities of microorganisms that form on any surface, enclosed within a matrix of extracellular polymeric substances (EPS). These biofilms typically consist of unicellular or simple filamentous organisms, often known as microfouling or slimes. In specific conditions, such as high water flow or exposure to toxins, macroalgae like Enteromorpha and Ectocarpus can exhibit stunted growth on anti-fouling surfaces. In such cases, these algae may adapt by adopting a more compact growth form or integrating into the microfouling slime layer. The term “algal biofilms” refers to communities primarily dominated by microalgae that colonize well-lit surfaces when moisture and nutrients are present (Leadbeater BS et al., 1992, Jarvie HP, Neal C, et al., 2002).

Adherence and Attachment

Two methods can achieve microalgae immobilization: passive immobilization, accomplished through natural or induced biofilm formation, and active immobilization, achieved by trapping the cells within hydrogel polymer matrices. Researchers have utilized various immobilization media, including alginates, carrageenans, and polyacrylamide gel, for various purposes (Muñoz et al., 2009; de-Bashan and Bashan, 2010; He and Xue, 2010; He et al., 2014; Gagliano et al., 2017). Immobilization based on these polymeric matrices provides low mechanical strength and can result in restrictive diffusion of the substrate (Qureshi et al., 2005; Moreno-Garrido, 2008). This approach capitalizes on microalgae’s natural tendency to form biofilms.

Inorganic and organic compounds adhere to the surface of a substrate, creating a conducive environment for microbial growth (Qureshi et al., 2005; Stephens et al., 2015). Once microalgae and bacteria establish themselves on the surface, they secrete extracellular substances comprising nucleic acids, proteins, polysaccharides, and phospholipids. These substances serve a dual purpose: enhancing adherence to the substrate and simultaneously capturing and concentrating essential nutrients required for cell growth (Mohsenpour et al., 2021; Qureshi et al., 2005).

Algal Biofilm Habitats: Nature’s Adaptive Colonizers

In natural ecosystems such as rainforests, deserts, and ocean floors, algal biofilms are commonly present on surfaces like river stones (see Fig. 1), seashores, garden walls, tree bark, reed stems, and bamboo pipes. These microalgal biofilms thrive when they have sufficient moisture and light, and people typically collect them by scraping. They can grow on various materials, including plastics such as polyvinylchloride, polyethylene, polyurethane polymethyl methacrylate, polystyrene, polycarbonate, and polyamide; and other materials such as glass, cardboard, and ceramic tiles.

Notably, algal biofilms exhibit adaptability to environmental changes, maintaining colonies on surfaces and detaching either as single colonies or in clumps.

algal biofilms
Fig1 Algae Biofilm on stones

Composition of algal biofilms

The polysaccharide matrix called EPS embeds microorganisms in biofilms, providing cohesion and enabling component interactions (Flemming & Wingender et al., 2010).

Nutrients and dissolved gases diffuse through the boundary layer above the biofilm, then through the EPS matrix to reach biofilm cells, while waste gases and products either recycle within or diffuse outward. Surfaces concentrate charged particles and molecules, potentially serving as nutritional sources due to mineral and organic content. Various inorganic and organic molecules accumulate on surfaces, and particle-associated bacteria exhibit higher nutrient uptake rates, as shown by (Paerl and Merkel et al.,1982).

Diatoms are common early colonizers in algal biofilms, often making up the majority of associated bacteria and other unicellular organisms (Jackson & Jones, 1988). Single-celled diatoms are known for their silica frustules and their golden brown appearance, which is attributed to the fucoxanthin pigment present in their chloroplasts. They vary in size and attachment mechanisms (Daniel et al., 1987). Just a few diatom cells can start surface attachment, multiplying to form a compact biofilm.

In freshwater environments, green algae and cyanobacteria, particularly in aerial conditions, can dominate algal biofilms (Grant et al., 1982). For instance, Pleurococcus, a green unicellular alga, thrives in damp conditions on various surfaces. Trentepohlia, a filamentous green alga, can disfigure exterior surfaces in humid regions (Wee & Lee et al.,1980). Cyanobacteria, though usually minor, can become dominant due to their resilience and nitrogen-fixing abilities.

The biofilm is a dynamic community in equilibrium with its environment, undergoing growth, death, sloughing, and regeneration processes similar to bacterial biofilms but with less organization (see fig 2).

mature algal biofilms
Fig 2 Mature Algal Biofilm

Factor affecting algal biofilm.

The development and adhesion of algal biofilms are influenced by various factors, including the physico-chemical characteristics of the substrate, operational parameters (see fig 3), the specific microalgal strain employed, and the interactions between microalgal cells, the substrate, and the liquid medium.

factors affecting algal biofilms
Fig 3 Factors Affecting algal biofilm

Light

Light is essential for algal photosynthesis and microalgal growth. Green algae dominate in high-light conditions during early colonization, while heterotrophic bacteria thrive in low-light environments. Diatoms often prevail in light-limited algal biofilms.

Increasing photon flux density (PFD) enhances growth rates in planktonic algae, but excessive PFD can result in photoinhibition and photooxidation, leading to culture stagnation or demise. Microalgae have the capacity to adjust to changing light intensities to optimize efficiency and protect against photodamage. The specific threshold for photoinhibition or light limitation varies among biofilm communities.

Under high irradiance, thick biofilms dominated by green algae resembling Scenedesmus were observed. Biofilms cultivated in a similar light range exhibited higher cellular nutrient content compared to those grown under higher light regimes. Algal Biofilms cultured under low irradiance using the same inoculum were thinner, more compact, and featured a wider variety of species, including cyanobacteria.

Hultberg et al. demonstrated that light quality has a direct impact on biofilm formation when using monochromatic illumination, suggesting the potential for enhanced cellular growth and lipid content through light quality optimization.

Temperature

Temperature plays a pivotal role in microalgal growth, biomass production, and biochemical processes. The optimal temperature range for microalgal cultivation typically spans from 20°C to 25°C. Below 16°C, growth slows down, while exceeding 35°C can be fatal for certain species. High temperatures, depending on the species, can stimulate cell growth, adhesion, and EPS production, promoting the formation of biofilms (Qureshi et al., 2005).

Claquin et al. (Claquin et al.; 2008) conducted research highlighting temperature’s significant impact on marine microalgae, influencing growth and the secretion of transparent exopolymeric particles (TEP) due to shifts in microbial and grazing activities (Honda Y, Matsumoto J, et al., 1983). Temperature also affects algal growth rates, species composition, and grazing activity within biofilm communities(Rao TS et al.; 2010). Tuchman and Blinn (1979) observed a rise in algal densities as temperature increased.

The Arrhenius relationship elucidates how temperature influences algal growth rates under consistent light and optimal nutrient conditions(Goldman JC et al.; 1974, Raven JA et al.; 1988).  Biofilms grown in thin water layers are more sensitive to temperature fluctuations compared to suspended cultures (Posadas et al., 2013).

Furthermore, temperature stress and the accumulation of calcium can have adverse effects on EPS production in algal cells (Domozych, et al., 2007). Fica and Sims (2016) determined that elevating wastewater temperature (7–27°C) and increasing organic carbon levels (300–1,200 mg L−1) significantly enhance biomass growth in algae-based biofilm systems. Temperature serves as the precise conductor orchestrating the dynamics of microalgae.

Nutrients

The abundance of algal species within biofilms is strongly influenced by nutrient concentration and light intensity, with a preference for algal dominance under conditions of high inorganic and low organic carbon levels(Unnithan VV et al.; 2014).

Nutrient availability plays a pivotal role in shaping algal growth, biofilm characteristics, succession patterns, and species composition (Nils RP et al.; 2003, Sekar R et al.; 2002). Environments enriched with biodegradable organic matter tend to favor the development of heterotrophic biofilms, whereas phototrophic biofilms thrive in response to light and the presence of inorganic nutrients (Hillebrand H et al.; 2002, Olapade OA et al.; 2006). The transport of nutrients to algal cells occurs through a concentration boundary layer via diffusion mechanisms.

Nitrogen and phosphorus availability exert distinct influences on microalgal metabolism. In instances of nitrogen starvation, microalgae pivot towards the production of lipids and/or carbohydrates as opposed to proteins (Gojkovic et al., 2020). There exists a mutual reliance between nitrogen and phosphorus uptake, with green algae initially dominating biofilms in nitrogen-deficient conditions, followed by diatoms, and ultimately cyanobacteria. The presence of phosphorus enhances nitrogen uptake, and in the presence of nitrogen, excess phosphorus can be absorbed by algae, a phenomenon known as luxury uptake (Bougaran et al., 2010)t.

Monod’s Kinetic Expression in Algal Biofilm Research

Monod’s kinetic expression finds application in algal biofilm research to elucidate growth patterns concerning nutrient concentrations and to predict rates of substrate utilization. For instance, Hill et al. 2009 established a growth saturation threshold of 25 μg/L soluble reactive phosphorus (SRP) for algal growth in stream biofilms.

Microalgae harness dissolve for in-organic carbon sources such as CO2 (aq) and HCO3 − found in wastewater, along with atmospheric CO2, and organic carbon derived from bacterial degradation (E. Posadas et al.; 2013, L.B. Christenson et al.; 2011).

Carbon, nitrogen, phosphorus, and silicon (for diatoms) are pivotal elements governing microalgae growth. The ratios of C:N:P serve as valuable indicators of nutrient limitation within algal communities, with the Redfield ratio (106:16:1 molar basis) representing a characteristic benchmark for optimally growing phytoplankton (R.S. Stelzer et al.; 2001, H. Hillebrand et al; 1999)

Elevated levels of nitrogen and phosphorus, coupled with increased inorganic carbon concentrations and heightened light intensity, augment the accumulation of photosynthetic biomass and its relative proportions in comparison to non-photosynthetic biomass. Additionally, advanced cultures and elevated temperature and nutrient loading rates contribute significantly to an upsurge in the proportions of cyanobacteria within photosynthetic biofilms.

pH

The pH level plays a crucial role in nutrient availability, including factors such as the solubility of ammonium and phosphate ions, as well as the formation of precipitates. Elevated pH values, typically at 9 or above, can trigger the formation of calcium phosphate, rendering it inaccessible to microalgae (Laliberté et al., 1997). Conversely, a decrease in pH levels can influence enzymatic activities, albeit depending on the specific microalgal species, thereby decelerating cell growth and product production.

Furthermore, pH values determine the charge of functional groups present on the surface of microalgae, consequently affecting their capacity to bind substances such as heavy metal ions.

CO2

Carbon stands as an indispensable element vital for the growth and productivity of microorganisms. Photoautotrophic organisms like microalgae possess the capacity to employ light energy to photosynthetically convert carbon dioxide (CO2) into biomass (S.B. Patwardhan et al.; 2022). Additionally, microalgae can utilize soluble carbonates as a carbon source for cellular growth, either via direct uptake or by catalyzing the conversion of carbonate into free carbon dioxide through enzymatic carboanhydrase activity.

Hence, the availability of an appropriate level of CO2 is imperative for the proper growth and metabolic activities of microalgae. Deviations from this optimum CO2 level, whether below or above, can exert adverse impacts on growth and productivity (W. Blanken et al 2014, B. Clement-Larosiere et al.; 2014). For instance, CO2 concentrations falling below the optimal level may result in carbon limitation, thereby retarding growth and productivity. Conversely, upon the introduction of an elevated concentration of CO2, microalgae assimilate a portion of the carbon through photosynthesis. Simultaneously, the excess carbon is converted into carbonic acid (H2CO3), which subsequently induces acidification of the medium.

Substratum

Algal adhesion studies primarily explore surface characteristics and material composition’s influence on biofilm formation to enhance cell attachment and biofilm growth. Ozkan and Berberoglu (2013) found differences in cell attachment between green algae and diatoms related to surface hydrophobicity, a concept emphasizing hydrophobic entities’ preference for each other to minimize water contact (Palmer et al., 2007).

Surface texture is crucial; rough or porous surfaces, with increased surface area and shear force protection, promote higher cell attachment (Gross et al., 2016; Huang et al., 2018). Increasing surface roughness, as suggested by Cao et al. (2009), creates slower flow zones that aid algal settlement. Studies by Huang et al. (2018) and Kardel et al. (2018) demonstrated weaker shear stress on grooved surfaces, influencing cell attachment based on groove shapes.

Material properties matter. Christenson and Sims (2012) found superior algal growth on cellulose-based natural polymer surfaces over synthetic polymers on various substrates. Sekar et al. (2004) observed greater attachment of certain algal species to hydrophobic surfaces (e.g., titanium, perspex, stainless steel), with exceptions for copper and its alloys, which hindered attachment due to toxicity (aluminum and admiralty brass).

Hydrophobicity

Hydrophobicity is a factor that affects the surface of the algal cell and substrate, for this reason considered an interface and a cellular factor. In diverse multi-species microbial biofilm, the presence of fimbriae, proteinaceous bacterial appendages rich in hydrophobic amino acids, can increase cell surface hydrophobicity (Barros et al., 2018). Flagellated cells show an increased ability to attach to surfaces. Flagellar motility may serve to overcome initial electrostatic surface repulsion (Bullitt and Makowski, 1995; Qureshi et al., 2005; Krasowska and Sigler, 2014). However, the microalgae biofilm on a hydrophilic surface might decrease and then increase with the increasing concentration of DOMs(dissolvable organic matter) and inorganic salts. Furthermore, many studies have shown that the DOMs can adsorb onto the substratum surface, leading to the development of surface conditioning films (Hwang et al., 2012)

Flow Velocity

The flow velocity of the liquid medium housing the algal biofilm plays a pivotal role in governing both cellular growth and attachment dynamics. This is primarily attributed to the liquid medium’s essential function as a source of vital nutrients for sustaining microalgal cells. However, it is imperative to acknowledge that elevated flow velocities can impose shear stress upon the biofilm (P. Choudhary et al.; 2017).

Furthermore, it is well-documented that turbulent flows occurring within the liquid medium have the potential to induce the detachment of cells from the biofilm, leading to a subsequent reduction in the overall thickness of the biofilm (L. Katarzyna et al.; 2015). It is noteworthy that the specific arrangement of microalgal biofilms may involve their placement within a rotational environment, resulting in periodic exposures to gaseous and liquid phases. This unique configuration introduces an added layer of complexity to the intricate interplay between flow velocity, shear stress, and the dynamics of microalgal cell growth and attachment within the biofilm milieu.

Extracellular polymeric substances (EPS)

Extracellular Polymeric Substances (EPS) in algal biofilm communities consist of polysaccharides, proteins, nucleic acids, lipids, and humic acids (A.M. Romani et al.; 2008, F. Di Pippo et al .; 2009)  influencing their physical and chemical properties. EPS serves as nutrient reservoirs, with embedded enzymes breaking down EPS and inert solids (Sutherland IW et al.; 1999), and they act as ion exchange resins, trapping nutrients through sorption (Flemming HC et al.; 2007, Wolfaardt GM  et al; 1999). EPS roles include facilitating cell movement (D.J. Smith  et al.; 1998), preventing cell desiccation, protecting against toxins (J.V. Garcia-Meza  et al.; 2005), and providing structural stability (I.W. Sutherland et al.; 2001).

Environmental Factors Influencing EPS Production

Microalgae adjust EPS production in response to environmental factors during biofilm formation. Light intensity significantly affects EPS accumulation (H. Ge et al.; 2014), e.g., Nostoc sp. produces more EPS at 206.20 mg/g DW under 80 μE.m^−2.s^−1 compared to 155.49 mg/g DW at 40 μE.m^−2.s^−1 .

Adhesion materials enhance EPS production in diatom Amphora coffaeformis (Becker K et al .; 1996). Growth materials influence EPS, as shown by Shen et al. (H. Ge et al.; 2014), and increased nutrient levels, especially nitrogen, boost EPS in diatom and green algae. Operational factors like light, temperature, nutrients, and culture density affect both biomass and EPS secretion. Li et al. noted EPS concentrations of 1.25 and 1.75 g.L^−1 with C/N ratios of 0.96 and 12.82, respectively (.H. Li, L. Ji et al.; 2020).

Young, grazed algal biofilms exhibit high EPS-to-biomass ratios for survival (C. Barranguet et al.; 2005). Cyanobacteria and diatom biomass correlate positively with EPS in wastewater-based biofilms. Light is linked to EPS production, and even in darkness, some species like Cylindrotheca closterium, Navicula perminuta, and Nitzschia sigma secrete EPS using stored glucan as a carbon source (D.J. Smith et al.; 1998).

Wastewater algal biofilms face grazing and changing conditions, necessitating species selection for EPS production and carbon management.

Species interaction

Natural biofilms encompass a diverse array of microbial constituents, including fungi, algae, protozoa, flagellates, and bacteria ( B.S.C. Leadbeater et al.; 1992, F. Di Pippo  et al.; 2009). Within photosynthetic biofilms, one finds a myriad of algae, bacteria, cyanobacteria, protozoa, and multicellular microorganisms. Notably, diatoms, green algae, and filamentous algae play substantial roles in contributing to biofilm biomass, displaying both autotrophic and heterotrophic capacities (Liang Y,Sarkany N et al; 2009). The bacterial component encompasses cyanobacteria and heterotrophic and autotrophic bacterial species.

Within algal biofilm, organisms engage in symbiotic interactions where heterotrophic bacteria serve as a source of carbon dioxide for photosynthetic organisms, thereby enabling the production of biomass and oxygen during respiration. Furthermore, excreted carbohydrates, vitamins, and organic compounds serve as vital nutrients for both algae and bacteria. This nutrient exchange is facilitated by the initial colonization of bacteria, which expedites the formation of algal biofilms (G. Roeselers et al.; 2007, É. Ács et a.; 2007).

Developmental Stages and Species Succession

The developmental stage of a biofilm exerts a discernible influence on species succession, resulting in alterations in the relative abundance and proportions of algae, bacteria, and extracellular polymeric substances (EPS) . In the early stages of photosynthetic biofilm formation, a higher proportion of EPS and bacteria is observed in comparison to algae and cyanobacteria, a phenomenon colloquially referred to as “conditioning”. Subsequently, following the establishment of the EPS matrix, algae exhibit rapid growth in the upper layers of the biofilm, thereby prompting bacteria to form aerial colonies in competition for essential nutrients.

Succession Patterns in Algal Groups

Biofilm maturity also exerts discernible effects on the dominance of specific algal groups. Diatoms are found to predominate in the early stages of biofilm development (typically within the first 15–20 days), while filamentous chlorophytes become more prevalent in later stages (Besemer K, Singer et al.; 2007, Johnson Reet al.; 1997). Some investigations have suggested a succession pattern characterized by an initial dominance of green algae during the early phase (1–4 days), followed by diatoms during the subsequent phase (5–9 days), and ultimately giving way to cyanobacteria during the third phase (10–15 days) (Sekar R et al.; 2004). Cyanobacteria are identified as late successional microorganisms (Zippel B et al.; 2005) with their distribution and prevalence being influenced by a multitude of factors (Rao TS et al.; 2010, Barranguet C et al.;2005, Sekar R et al.; 2004 ).

The presence of grazers, including Chironomids, Gastropods, Trichopteran larvae, Ephemeropteran larvae, and crustaceans, has a pronounced impact on reducing algal biomass throughout the seasons, with summer exhibiting the most significant effects (Hillebrand H et al.; 2001). Notably, filamentous species and chain-forming diatoms are more susceptible to grazing than single-celled algae species (Hillebrand H et al.;2002).

The succession of algal species within photosynthetic biofilms is governed by a complex interplay of factors, including light intensity, temperature, nutrient concentrations, and shear rates, with seasonal variations playing a pivotal role in shaping these dynamics see fig 4.

algal biofilms applivation
Fig 4 Different factors for algal biofilm and its application

Metabolic pathway

Metabolic pathways in microalgae cultivation are influenced by the availability and form of nutrients, primarily driven by the assimilation of available carbon (Markou G et al., 2014). These pathways play a crucial role in enhancing biomass production and shaping the composition of intracellular metabolites like proteins, lipids, and pigments. They rely on inputs such as light and carbon sources (Wang J et al.,2014).

Heterotrophic cultivation of microalgae is considered the most promising approach for achieving higher biomass yield and optimizing biochemical composition (Chen F.  et al.,1996, Yang C et al.,2000). Generally, there are three distinct metabolic pathways in microalgae, determined by their nutritional requirements for growth and valuable biochemical production.

The main cultivation conditions are photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation.

Photoautotrophic cultivation

The photosynthetic pathway involves converting sunlight and carbon dioxide into energy and cellular carbon dioxide, directing biochemical production in microalgae (Burkholder JM et al., 2008).

In photoautotrophic cultivation, microalgae exhibit varying lipid contents, ranging from 5% to 68%, depending on the species (Chen CY et al.; 2011). To boost lipid content during growth, nitrogen or nutrient limitations can be applied (Mata TM et al.,2010). The highest reported lipid productivity in microalgae under photoautotrophic conditions reached 179 mg/L/d using Chlorella sp. with 2% carbon dioxide and 0.25 vvm aeration (Chiu SY et al.; 2008).

Heterotrophic cultivation

Heterotrophic cultivation involves microalgae using organic compounds as both carbon and energy sources (Chojnacka K et al.; 2004). Some microalgae species can thrive in both photoautotrophic and heterotrophic conditions.

Only a few microalgae species have succeeded on a large scale in the heterotrophic mode (Lee DU et al.; 2001), but it is more efficient in terms of cell production per unit energy compared to the autotrophic mode (Yang C et al.; 2000). For instance, Chlorella protothecoides experienced a 40% increase in lipid content when shifting from photoautotrophic to heterotrophic cultivation ( Xu H et al.; 2006).

Microalgae can utilize various organic carbon sources during growth, including sucrose, glucose, lactose, galactose, glycerol, and fructose (Liang Y et al.;2009). Some microalgal species are obligate heterotrophs and are cultivated in heterotrophic mode, especially for lipid and pigment production from wastewater. This approach allows for achieving high cell densities, up to 100 g/L, facilitating microalgae biomass harvesting (Morales-Sánchez D et al.; 2015).

Mixotrophic cultivation

Mixotrophic cultivation combines autotrophic and heterotrophic modes, enhancing microalgae growth and resource utilization (Burkholder JM et al.; 2008). Microalgae use organic carbon compounds and CO2 as carbon sources, recycling CO2 during phototrophic conditions when light is available (Mata TM et al.; 2010). This approach aids global carbon dioxide reduction by utilizing carbon dioxide for microalgae growth. Industrial wastewater serves as a carbon source when combined with a light source, offering an efficient and cost-effective microalgae cultivation method (see fig 5).

Fig 5 Mixotrophic cultivation of algae biofilm
Conclusion

Algal biofilms, a captivating realm within microbiology and environmental science, showcase intricate communities of microorganisms residing within a matrix of extracellular polymeric substances (EPS). Dominated by microalgae, cyanobacteria, and heterotrophic bacteria, these biofilms are versatile colonizers, populating a range of surfaces where moisture and light are abundant, from river stones to plastic surfaces and tree bark. Their ability to thrive and adapt in diverse conditions, using three primary metabolic pathways (photoautotrophic, heterotrophic, and mixotrophic cultivation), underscores their resourcefulness.

Beyond their aesthetic appeal, algal biofilms play an active ecological role. They contribute to water purification, nutrient cycling, and the production of valuable biomass and bioactive compounds, reflecting the dynamic nature of natural ecosystems. In a world grappling with environmental challenges, algal biofilms offer hope and insight, serving as a model of resilience. These microorganisms, without traditional plant structures, harness the power of photosynthesis, adapting to changing conditions, and exemplifying the ingenuity and tenacity of life.

Algal biofilms are not just subjects of scientific inquiry; they are living testaments to the intricate interplay of microorganisms in nature, demonstrating the remarkable potential for adaptation and survival. In a changing world, their adaptability and resourcefulness inspire us to explore and understand the complex relationships within ecosystems.

References

Kesaano M, Sims RC. Algal biofilm based technology for wastewater treatment. Algal Research. 2014 Jul 1;5:231-40.

Leadbeater BS, Callow ME. Formation, composition and physiology of algal biofilms. InBiofilms—science and technology 1992 Nov 30 (pp. 149-162). Dordrecht: Springer Netherlands.

Jarvie HP, Neal C, Warwick A, White J, Neal M, Wickham HD, Hill LK, Andrews MC. Phosphorus uptake into algal biofilms in a lowland chalk river. Science of the Total Environment. 2002 Jan 23;282:353-73.

Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microbial cell factories. 2005 Dec;4(1):1-21.

Stephens E, Wolf J, Oey M, Zhang E, Hankamer B, Ross IL. Genetic engineering for microalgae strain improvement in relation to biocrude production systems. Biomass and Biofuels from Microalgae: Advances in Engineering and Biology. 2015:191-249.

Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T. Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment. 2021 Jan 15;752:142168.

Flemming HC, Wingender J. The biofilm matrix. Nature reviews microbiology. 2010 Sep;8(9):623-33.

Matz C, Deines P, Jürgens K. Phenotypic variation in Pseudomonas sp. CM10 determines microcolony formation and survival under protozoan grazing. FEMS microbiology ecology. 2002 Jan 1;39(1):57-65.

Pajdak-Stós A, Fiakowska E, Fyda J. Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquatic Microbial Ecology. 2001 Feb 28;23(3):237-44.

Paerl H, Merkel S. The effects of particles on phosphorus assimilation in attached vs. free floating microorganisms. Arch. Hydrobiol. 1982;93:125-34.

Jackson SM, Jones EB. Fouling film development on antifouling paints with special reference to film thickness. International biodeterioration. 1988 Jan 1;24(4-5):277-87.

Daniel GF, Chamberlain AH, Jones EB. Cytochemical and electron microscopical observations on the adhesive materials of marine fouling diatoms. British phycological journal. 1987 Jun 1;22(2):101-18.

Reference

Grant C. Fouling of terrestrial substrates by algae and implications for control-a review. International Biodeterioration Bulletin. 1982;18(3):57-65.

Wee YC, KB L. Proliferation of algae on surfaces of buildings in Singapore.

Markou G, Vandamme D, Muylaert K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water research. 2014 Nov 15;65:186-202.

Wang J, Yang H, Wang F. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Applied biochemistry and biotechnology. 2014 Apr;172:3307-29.

Chen F. High cell density culture of microalgae in heterotrophic growth. Trends in biotechnology. 1996 Nov 1;14(11):421-6.

Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical engineering journal. 2000 Oct 1;6(2):87-102.

Burkholder JM, Glibert PM, Skelton HM. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful algae. 2008 Dec 1;8(1):77-93.

Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource technology. 2011 Jan 1;102(1):71-81.

Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews. 2010 Jan 1;14(1):217-32.

Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource technology. 2008 Jun 1;99(9):3389-96.

Chojnacka K, Marquez-Rocha FJ. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology. 2004 Mar;3(1):21-34.

Lee DU, Lee IS, Choi YD, Bae JH. Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification. Process Biochemistry. 2001 Jun 1;36(12):1215-24.

Reference

Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical engineering journal. 2000 Oct 1;6(2):87-102.

Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of biotechnology. 2006 Dec 1;126(4):499-507.

Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology letters. 2009 Jul;31:1043-9.

Morales-Sánchez D, Martinez-Rodriguez OA, Kyndt J, Martinez A. Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology. 2015 Jan;31:1-9.

Theriault RJ. Heterotrophic growth and production of xanthophylls by Chlorella pyrenoidosa. Applied Microbiology. 1965 May;13(3):402-16.

Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Marine drugs. 2011 Sep 20;9(9):1607-24.

Van Wagenen J, De Francisci D, Angelidaki I. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana. Journal of Applied Phycology. 2015 Oct;27:1775-82.

Roeselers G, van Loosdrecht MC, Muyzer G. Heterotrophic pioneers facilitate phototrophic biofilm development. Microbial Ecology. 2007 Oct;54:578-85.

Guzzon A, Bohn A, Diociaiuti M, Albertano P. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water research. 2008 Oct 1;42(16):4357-67.

Rier ST, Stevenson RJ, LaLiberte GD. PHOTO‐ACCLIMATION RESPONSE OF BENTHIC STREAM ALGAE ACROSS EXPERIMENTALLY MANIPULATED LIGHT GRADIENTS: A COMPARISON OF GROWTH RATES AND NET PRIMARY PRODUCTIVITY 1. Journal of Phycology. 2006 Jun;42(3):560-7.

Goldman JC, Carpenter EJ. A kinetic approach to the effect of temperature on algal growth 1. Limnology and Oceanography. 1974 Sep;19(5):756-66.

Raven JA, Geider RJ. Temperature and algal growth. New phytologist. 1988 Dec;110(4):441-61.

DM D. Periphyton responses to temperature at different ecological levels. Algal ecology-Freshwater benthic ecosystems. 1996.

References

Murphy TE, Berberoğlu H. Temperature fluctuation and evaporative loss rate in an algae biofilm photobioreactor.

Doucha J, Lívanský K. Outdoor open thin-layer microalgal photobioreactor: potential productivity. Journal of applied phycology. 2009 Feb;21:111-7.

Mack WN, Mack JP, Ackerson AO. Microbial film development in a trickling filter. Microbial ecology. 1975 Sep;2:215-26.

Congestri R, Di Pippo F, De Philippis R, Buttino I, Paradossi G, Albertano P. Seasonal succession of phototrophic biofilms in an Italian wastewater treatment plant: biovolume, spatial structure and exopolysaccharides. Aquatic microbial ecology. 2006 Dec 21;45(3):301-12.

Besemer K, Singer G, Limberger R, Chlup AK, Hochedlinger G, Hödl I, Baranyi C, Battin TJ. Biophysical controls on community succession in stream biofilms. Applied and environmental microbiology. 2007 Aug 1;73(15):4966-74.

Guzzon A, Bohn A, Diociaiuti M, Albertano P. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water research. 2008 Oct 1;42(16):4357-67.

Hill WR, Fanta SE, Roberts BJ. Quantifying phosphorus and light effects in stream algae. Limnology and oceanography. 2009 Jan;54(1):368-80.

Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, Chen Y, Zhang W, Chen X, Chen L, Gao L. Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresource technology. 2013 Jan 1;127:216-22.

Zippel B, Neu TR. Growth and structure of phototrophic biofilms under controlled light conditions. Water Science and technology. 2005 Oct 1;52(7):203-9.

Mulbry WW, Wilkie AC. Growth of benthic freshwater algae on dairy manures. Journal of Applied Phycology. 2001 Aug;13:301-6.

Adey WH, Kangas PC, Mulbry W. Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Bioscience. 2011 Jun 1;61(6):434-41.

Adey WH, Kangas PC, Mulbry W. Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Bioscience. 2011 Jun 1;61(6):434-41.

References

Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microbial cell factories. 2005 Dec;4(1):1-21.

Claquin P, Probert I, Lefebvre S, Veron B. Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquatic Microbial Ecology. 2008 Apr 24;51(1):1-1.

Honda Y, Matsumoto J. The effect of temperature on the growth of microbial film in a model trickling filter. Water Research. 1983 Jan 1;17(4):375-82.

Rao TS. Comparative effect of temperature on biofilm formation in natural and modified marine environment. Aquatic Ecology. 2010 Jun;44(2):463-78.

Tuchman M, Blinn DW. Comparison of attached algal communities on natural and artificial substrata along a thermal gradient. British Phycological Journal. 1979 Sep 1;14(3):243-54.

Goldman JC, Carpenter EJ. A kinetic approach to the effect of temperature on algal growth 1. Limnology and Oceanography. 1974 Sep;19(5):756-66.

Raven JA, Geider RJ. Temperature and algal growth. New phytologist. 1988 Dec;110(4):441-61.

Posadas E, García-Encina PA, Soltau A, Domínguez A, Díaz I, Muñoz R. Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors. Bioresource technology. 2013 Jul 1;139:50-8.

Domozych, D. S. (2007). Exopolymer Production by the Green AlgaPenium Margaritaceum: Implications for Biofilm Residency. Int. J. Plant Sci. 168 (6), 763–774. doi:10.1086/513606

Fica, Z. T., and Sims, R. C. (2016). Algae-based Biofilm Productivity Utilizing Dairy Wastewater: Effects of Temperature and Organic Carbon Concentration. J. Biol. Eng. 10, 18. doi:10.1186/s13036-016-0039-y

Unnithan VV, Unc A, Smith GB. Mini-review: a priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters. Algal Research. 2014 Apr 1;4:35-40.

Nils RP. Coupled nitrification‐denitrification in autotrophic and heterotrophic estuarine sediments: On the influence of benthic microalgae. Limnology and oceanography. 2003 Jan;48(1):93-105.

References

Sekar R, Nair KV, Rao VN, Venugopalan VP. Nutrient dynamics and successional changes in a lentic freshwater biofilm. Freshwater biology. 2002 Oct;47(10):1893-907.

Hillebrand H, Kahlert M, Haglund AL, Berninger UG, Nagel S, Wickham S. Control of microbenthic communities by grazing and nutrient supply. Ecology. 2002 Aug;83(8):2205-19.

Olapade OA, Leff LG. Influence of dissolved organic matter and inorganic nutrients on the biofilm bacterial community on artificial substrates in a northeastern Ohio, USA, stream. Canadian Journal of Microbiology. 2006 Jun 1;52(6):540-9.

Gojkovic Z, Lu Y, Ferro L, Toffolo A, Funk C. Modeling biomass production during progressive nitrogen starvation by North Swedish green microalgae. Algal Research. 2020 May 1;47:101835.

Bougaran G, Bernard O, Sciandra A. Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus. Journal of theoretical biology. 2010 Aug 7;265(3):443-54.

R.W. Hill, S.E. Fanta, B.J. Roberts, Quantifying phosphorus and light effects in stream algae, Limnol. Oceanogr. 54 (2009) 368–380.

E. Posadas, P. Garcia-Encina, A. Soltau, A. Dominguez, I. Diaz, R. Munoz, Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors, Bioresour. Technol. 139 (2013) 50–58. .

L.B. Christenson, R.C. Sims, Production and harvesting of microalgae for wastewater treatment, biofuels and by-products, Biotechnol. Adv. 29 (2011) 686–702.

R.S. Stelzer, G.A. Lamberti, Effects of N:P ratio and total nutrient concentration on stream periphyton community structure, biomass and elemental composition, Limnol. Oceanogr. 46 (2001) 356–367.

H. Hillebrand, U. Sommer, The nutrient stoichiometry of benthic microalgal growth: redfield proportions are optimal, Limnol. Oceanogr. 44 (1999) 440–446.

Laliberté, G., Lessard, P., de la Noüe, J., Sylvestre, S., 1997. Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresource Technology 59, 227–233. https://doi.org/10.1016/S0960-8524(96)00144-7

D. Hoh, S. Watson, E. Kan, Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review, Chem. Eng. J. 287 (2016) 466–473.

References

W. Blanken, M. Janssen, M. Cuaresma, Z. Libor, T. Bhaiji, R.H. Wijffels, Biofilm growth of chlorella sorokiniana in a rotating biological contactor based photobioreactor, Biotechnol. Bioeng. 111 (2014) 2436–2445.

B. Clement-Larosiere, F. Lopes, A. Goncalves, B. Taidi, M. Benedetti, M. Minier, D. Pareau, Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities, Eng Life Sci 14 (2014) 509–519.

Ozkan, A., and Berberoglu, H. (2013a). Cell to Substratum and Cell to Cell Interactions of Microalgae. Colloids Surf. B: Biointerfaces 112, 302–309. doi:10.1016/j.colsurfb.2013.08.007

Palmer, J., Flint, S., and Brooks, J. (2007). Bacterial CellAttachment, the Beginning of a Biofilm. J. Ind. Microbiol. Biotechnol. 34, 577–588. doi:10.1007/s10295-007-0234-4

Gross, M., Zhao, X., Mascarenhas, V., and Wen, Z. (2016). Effects of the Surface Physico-Chemical Properties and the Surface Textures on the Initial Colonization and the Attached Growth in Algal Biofilm. Biotechnol. Biofuels 9, 38. doi:10.1186/s13068-016-0451-z

Cao, J., Yuan,W., Pei, Z. J., Davis, T., Cui, Y., and Beltran,M. (2009). A Preliminary Study of the Effect of Surface Texture on Algae Cell Attachment for a Mechanical-Biological Energy Manufacturing System. J. Manufacturing Sci. Eng. 131 (6). doi:10.1115/1.4000562

Kardel, K., Blersch, D.M., and Carrano, A. L. (2018). Custom Design of Substratum Topography Increases Biomass Yield in Algal Turf Scrubbers. Environ. Eng. Sci. 35, 856–863. doi:10.1089/ees.2017.0354

L.B. Christenson, R.C. Sims, Algal biofilm reactor and spool harvester forwastewater treatment with biofuels by-products, Biotechnol. Bioeng. 109 (2012) 1674–1688.

R. Sekar, V.P. Venugopalan, K.K. Satpathy, K.V.K. Nair, V.N.R. Rao, Laboratory studies on adhesion of microalgae to hard substrates, Hydrobiologia 512 (2004) 109–116.

Barros, A. C., Gonçalves, A. L., and Simões, M. (2018). Microalgal/cyanobacterial Biofilm Formation on Selected Surfaces: the Effects of Surface Physicochemical Properties and Culture media Composition. J. Appl. Phycol 31, 375–387.doi:10.1007/s10811-018-1582-3

Reference

Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs?. Frontiers in cellular and infection microbiology. 2014 Aug 19;4:112.

P. Choudhary, A. Malik, K.K. Pant, in: Algal Biofilm Systems: An Answer to Algal Biofuel Dilemma, Algal Biofuels: Recent Advances and Future Prospects, 2017, pp. 7–96.

L. Katarzyna, G. Sai, O.A. Singh, Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs, Renew. Sust. Energ. Rev. 42 (2015) 1418–1427.

A.M. Romani, K. Fund, J. Artigas, T. Schwartz, S. Sabater, U. Obst, Relevance of polymeric matrix enzymes during biofilm formation, Microb. Ecol. 56 (2008) 427–436

F. Di Pippo, A. Bohn, R. Congestri, R. De Philippis, P. Albertano, Capsular polysaccharides of cultured phototrophic biofilms, Biofouling 25 (2009) 495–504.

Sutherland IW.Polysaccharidesinbiofilms – sources – action – conseuences.In:WingenderJ,NeuTR,FlemmingH-C,editors.Berlin:Springer; 1999.

Flemming HC,NeuTR,WozniakDJ.TheEPSmatrix:thehouseofbiofilm cells. JBacteriol2007;189(22):7945–7.

Wolfaardt GM, Lawrence JR, Korber DR. Function of EPS. In: Wingender J, Neu TR,FlemmingH-C,editors.Berlin:Springer;1999

D.J. Smith, G.J.C. Underwood, Exopolymer production by intertidal epipelic diatoms,

Limnol. Oceanogr. 43 (1998) 1578–1681.

J.V. Garcia-Meza, C. Barrangue, W. Admiraal, Biofilm formation by algae as a mechanism for surviving on mine tailings, Environ. Toxicol. Chem. 24 (2005) 573–581.

I.W. Sutherland, Biofilm exopolysaccharides: a strong and sticky framework, Microbiology 147 (2001) 3–9.

H. Ge, L. Xia, X. Zhou, D. Zhang, C. Hu, Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria nostoc sp, J. Microbiol. 52 (2014) 179–183.

Becker K.Exopolysaccharide production and attachment strength of bacteria and  diatoms on substrates with different surface tensions. MicrobEcol 1996;32:23–33

.H. Li, L. Ji, C. Chen, S.X. Zhao, M. Sun, Z.Q. Gao, H.Z. Wu, J.H. Fan, Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum, Bioresource Technol 309 (2020).

Reference

M. Cuaresma, Z. Libor, T. Bhaiji, R.H. Wijffels, Biofilm growth of chlorella sorokiniana in a rotating biological contactor based photobioreactor, Biotechnol. Bioeng. 111 (2014) 2436–2445.

B. Clement-Larosiere, F. Lopes, A. Goncalves, B. Taidi, M. Benedetti, M. Minier,D. Pareau, Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities, Eng Life Sci 14 (2014) 509–519.

  B.S.C. Leadbeater, M.E. Callow, Formation, composition and physiology of algal biofilms, in Melo, et al., (Eds.), Biofilms—Science and Technology, Kluwer Academic Publishers, Amsterdam Netherlands, 1992, pp. 149–162.

F. Di Pippo, A. Bohn, R. Congestri, R. De Philippis, P. Albertano, Capsular polysaccharides of cultured phototrophic biofilms, Biofouling 25 (2009) 495–504.

Bio Remediation/ Phycoremediation

Biofilms: A Dynamic Community in Equilibrium with the Environment

Biofilm, a complex assembly of microbial cells anchored to surfaces within a polysaccharide matrix, forms a harmonious and organized microbial community. This strategy enables microorganisms to thrive in favorable conditions, avoiding displacement by currents. Comprising cells and extracellular polymeric substances, biofilms exhibit dynamic equilibrium with their surroundings, cycling through growth, death, and regeneration.

Microorganisms gain remarkable advantages from biofilm cultivation, including protection from harsh conditions, enhanced resilience to stress, and cooperative metabolic and gene expression adjustments. Microorganisms thriving in biofilms exhibit an astonishing ability to adapt, demonstrating a captivating collective and synchronized behavior that intrigues both scientists and enthusiasts. (Donlan et al., 2002; Chmielewski and Frank et al., 2004; Van Houdt and Michiels et al., 2010). Multispecies biofilms are prevalent in nature, significantly impacting ecosystems (Donlan et al., 2002; Hall-Stoodley et al., 2004).

1. Microbial Biofilm Formation: A Complex Developmental Process in Bacteria

Biofilm formation is a captivating process wherein bacteria transition from single cells to structured multicellular communities. These parallels other bacterial developmental processes like sporulation (Dunny GM, Leonard BA. Et al.,1997), fruiting body formation (Plamann L et al.,1995, Shimkets et al.;1999, Wall D et al.,1999), and stalked-cell formation (Fukuda AK et al.,1977, Hecht GB et al., 1995, Trun NJ et al.,1990, Quon KC et al., 1996, Wu J et al.,1997). In nature, biofilms exist as diverse microbial communities, with bacteria joining, departing, exchanging genetic material, and occupying specific niches, resembling complex cities rather than developed organisms.

1.1 Biofilm Formation in Non-Motile Species

In non-motile species, during favorable conditions for biofilm formation, bacteria increase adhesin expression, enhancing stickiness for cell-to-cell and cell-to-surface adherence (Gotz, 2002). Surface proteins like Bap(biofilm-associated protein)  in staphylococci aid cell interactions and matrix creation (Lasa and Penades et al., 2006). Similar proteins exist in other species, often with repeated domains undergoing recombination within the bap gene, yielding variable-length proteins (Latasa et al., 2006). Additionally, species that lack motility also generate exopolysaccharides (EPS), which subsequently become crucial constituents of the extracellular matrix. An illustrative instance of this is the production of PIA(Polysaccharide intercellular adhesion )/PNAGS (Poly-N-acetylglucosamine )EPS by the gene products originating from the ica operon in staphylococcal species. Thus, altered surface proteins and EPS production are key in initiating biofilm formation in non-motile bacteria.

1.2 Biofilm Formation in Motile Species

In motile species, conducive conditions trigger bacteria to adhere to a surface, lose motility, and form biofilms. An extracellular matrix binds them together. Flagella are vital for biofilm initiation; flagella-minus mutants show reduced biofilm formation (Pratt and Kolter et al., 1998; Watnick and Kolter 1999; Lemon et al., 2007). Listeria monocytogenes recover initial adhesion with directed movement, indicating motility’s role in overcoming repulsion for biofilm formation (Lemon et al., 2007). The initial surface encounter leads to transient adherence, determining stable biofilm development or return to planktonic state.

2. Genetically Distinct Stages of Biofilm Formation

Biofilm formation can be divided into five genetically distinct stages:

1. Initial surface attachment

2. Monolayer formation

3. Migration to form multilayered microcolonies

4. Production of extracellular matrix

5. Biofilm maturation with characteristic three-dimensional architecture (O’Toole et al., 2000)(fig 1).

Decoding Bacterial Biofilms
Fig 1 Decoding Bacterial Biofilms: Approaches to Regulate and Control

3. Regulatory Variations in Biofilm Formation

In numerous motile bacteria, initial surface attachment relies on flagella-mediated motility. However, specific Gram-negative bacteria require type IV pili-associated surface motility for microcolony and three-dimensional architecture formation. Notably, this motility is absent in Gram-positive bacteria, except for Clostridia ssp. (Varga et al., 2006; O’Toole et al., 2000)

4. Extensive Cellular Differentiation in Biofilm Environment

Once the bacteria have successfully adhered to the surface, they begin producing an extracellular matrix. This matrix serves as a crucial organizational element, enabling the formation of structured communities within the biofilm. As a result, extensive cellular differentiation can occur within the biofilm environment.

5. Biofilm Composition and Architecture

Its composition hinges on the inoculum’s characteristics, while external factors like substrate, nutrients, competition, and grazing shape colonization and growth (Baier et al., 1980; Characklis & Cooksey et al., 1983; Marshall et al., 1985).

The architecture of biofilm is shaped by hydrodynamics, nutrients, bacterial motility, communication, exopolysaccharides, and proteins. Altered biofilm morphology in mutants lacking components of extracellular polymeric substances (EPS) illustrates their impact. Exopolysaccharides in Vibrio cholerae and colanic acid in Escherichia coli influence three-dimensional biofilm formation.

5.1 Biofilm Architecture in Bacillus subtilis

In the case of Bacillus subtilis biofilm, the matrix consists of an exopolysaccharide and the secreted protein Tas A, both of which are essential for maintaining the structural integrity of the matrix and facilitating the development of biofilm architecture resembling fruiting body-like structures (Fig 2). 

6. Factors affecting the formation of biofilm.

Biofilms form at interfaces of aqueous or gaseous phases and substratum surfaces in diverse systems. Metabolic substrates required for growth must be accessible in the aqueous phase (e.g., medical catheters) or between aqueous and solid phases (e.g., minerals). Nutrient quantity and ratios in the liquid phase impact growth-limiting factors (van Loosdrecht et al., 2002).

Biofilm development is influenced by factors like temperature, pH, Oxygen levels, hydrodynamics, osmolarity, ions, nutrients, and biotic elements, collectively shaping bacterial behavior as mentioned in Fig 3 (van Loosdrecht et al., 2002).

6.1 The Relevence of EPS in Biofilm Composition

In biofilms, microorganisms make up less than 10% of the dry mass, with over 90% being the EPS matrix. EPS facilitates cell adhesion, cohesion, and interactions, including cell-cell communication, promoting the formation of micro consortia. It acts as an external digestive system, retaining enzymes to sequester nutrients from the water phase. Biofilm morphology varies, from smooth and flat to rough, fluffy, or filamentous, even forming mushroom-shaped colonies surrounded by water-filled voids. The structure adapts in response to nutritional changes, supporting diverse habitats and the coexistence of mixed-species consortia (Klausen et al., 2003).

Table 1 Function of EPS for Biofilm Formation ( Flemming HC, Wingender J et al., 2010)
6.2 Surface factor

Interactions between bacterial cell walls and surfaces are influenced by interfacial electrostatic and van der Waals forces (McClaine JW et al.,2002, Vigeant MA et al.,2002). Other factors, such as hydration forces, hydrophobic interactions, and steric forces, also impact cell attachment (Findenegg GH. JN Israelachvili et al., 1985). Hydrophobic interactions (low surface energy) and electrostatic interactions charge have been extensively studied.

Fig 4 surface factor
6.2.1 Interactions Driving Bacterial Cell Attachment to Surfaces: Electrostatic Force

Electrostatic forces drive bacterial cell attachment to surfaces, given bacteria’s net negative charge (Soni KA et al., 2008, Katsikogianni MG et al 2010). Positively charged surfaces facilitate rapid attachment, while negative surfaces hinder it. Extracellular organelles aid in overcoming repulsion (Bullitt E et al., 1995). High ionic strength reduces charge effects. Bacterial cell walls expose functional groups interacting with substrates (Hong Y et al.,2008). Adsorbed molecules influence surface chemistry and charge, aiding adsorption and biofilm growth. Hydrophobic groups and organelles stabilize interactions after repulsion.

Biofilms form on various materials in contact with bacteria-containing fluids, influenced by surface roughness, chemistry, and conditioning films (Donlan et al., 2002). Hydrophobic surfaces promote faster attachment through interactions with flagella, fimbriae, and pili (Donlan et al., 2002; Donlan and Costerton et al., 2002). However, exceptions like Listeria monocytogenes prefer hydrophilic surfaces (Chavant et al., 200). Clinical isolates of Staphylococcus epidermidis favor biofilm formation on hydrophobic substrates (Cerca et al., 2005). Hydrophilic surfaces generally exhibit higher bacterial attachment than hydrophobic surfaces (Donlan, 2002).

6.2.2 High energy surface

Thermodynamic analysis of surface energies reveals insights into bacterial adhesion (Absolom DR 1983). Hydrophilic surfaces enhance bacterial adhesion when cell wall surface tension exceeds the surrounding liquid (Absolom DR et al.,1983). Fluorinated materials with large contact angles indicate low-energy surfaces (Absolom DR et al., 1983). Oxidation of fluorinated surfaces reduces initial bacterial attachment due to altered hydrophilic properties (Davidson CA et al., 2004). Bacterial attachment depends on surface free energy; high surface free energy surfaces like stainless steel and glass are more hydrophilic (Davidson CA et al., 2004). Biofilm growth depends on various factors, including nutrient concentrations and light availability, once bacterial cells adhere and achieve confluence.

6.3 Role of Biosurfactants in Bacterial Attachment and Biofilm Formation

Biosurfactants with antibacterial and antifungal properties are crucial for bacterial attachment to and detachment from oil droplets (Kim HJ et al., 2011 ). Research interest in environmentally friendly chemicals has grown, including biosurfactants (Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF et al., 2008, Eun YJ et al.,2009 ). Microorganisms produce biosurfactants at the air-water interface, influencing surface tension and gas exchange in surface waters (Flickinger ST et al.,2011). Rhamnolipids, found in the EPS matrix of P. aeruginosa, act as surfactants, contributing to microcolony formation, bacterial migration, and biofilm dispersion (Boedicker JQ et al.,2009) (Vincent ME et al.,2010, Renner LD, Weibel DB et al.,2011) (Harmsen M et al., 2010).

6.4 Influence of Quorum Sensing (QS) on Biofilm Formation

Quorum sensing (QS) is a crucial regulatory mechanism for biofilm formation (Parsek and Greenberg 2005). Microorganisms release auto-inducers (AIs) that induce or repress QS-controlled genes, impacting biofilm structure and 3-dimensional organization (Steinmoen et al. 2002). QS also influences population size and dispersion in biofilms (Lewis et al., 2001; Davies et al., 2003; Jesaitis et al. 2003). Additionally, QS can induce behaviors and control group activities, affecting biofilm development and resistance to stress (Camilli and Bassler et al.,2006). Cell properties like hydrophilicity, fimbriae, and flagella also influence microbial attachment in biofilms.

Biofilms
Fig 5 Quorum sensing (QS)
6.5 Chemotaxis triggers biofilm formation

Chemotaxis is vital for biofilm formation in bacteria like Pseudomonas aeruginosa, E. coli, and Vibrio cholerae (O’Toole GA et al., 1998, Pratt LA et al.,1998, Watnick PI et al.,1999). Bacteria sense chemical stimuli, use flagella to swim toward nutrients, and attach to the substrate. Flagella and/or type IV pili are essential for initial cell adhesion, leading to microcolony formation (Stelmack PL et al.,1999). E. coli also utilizes type I pili for initial attachment. Bacterial chemotaxis aids biofilm growth and spread as it develops.

6.6 Importance of Horizontal Gene Transfer (HGT) in Microbial Communities

Horizontal gene transfer (HGT) is crucial for microbial evolution, facilitated by mobile       genetic elements like plasmids, transposons, and bacteriophages (Koonin EV et al., 200) Bacterial biofilms show distinct gene expression compared to planktonic counterparts, influenced by the surface they settle on (Keyhani NO et al.,1996) HGT occurs within biofilms, allowing gene transfer between bacteria (Roberts AP et al.,1999).HGT also plays a significant role in animal evolution, diseases, and intercellular processes, like Agrobacterium transferring genetic material to plants (Guo M et al.,2019). Chemotaxis influences HGT, seen in Agrobacterium’s DNA transfer to plant cells (Guo M et al.,2019)., Niehus R et al.,2015). Other pathogenic bacteria also employ chemotaxis-derived HGT within host cells (Dougherty K et al.,2014 , Desmond E et al.,2007).

6.7 Interspecies Interactions in Bacterial Adhesion: Implications for Biofilm Stabilization and Commensal Relationships

McEldowney and Fletcher (McEldowney S, Fletcher M et al.,1987) showed that bacterial adhesion to a surface can affect other species differently, with negative, positive, or neutral outcomes. Inhibitory interactions may involve cell blockage or secretion of inhibitory macromolecules (Belas MR, Colwell RR et al.,1982).

6.7.1 Positive Interactions during Adhesion

Positive interactions during adhesion can result from bacterial products modifying the conditioning film or direct cell-to-cell contact. Dental plaque exemplifies direct interactions, where ligand-receptor interactions cause interspecies coaggregation (Kolenbrander PE et al., 1989). Hydroxyapatite attachment enhances the adhesion of co-aggregating pairs (Ciardi JE, McCray GF et al.,1987, Schwarz SU, Ellen RP 1987 ). Other interactions, like mutans streptococci adhering to immobilized oral bacteria, play a role in biofilm formation (Lamont RJ et al.,1990). Interspecies interactions are crucial during the initial stages of biofilm formation.

Fig 6 Mutualism
6.7.2 Neutral Adhesion Interactions

The attachment of one species to a substrate may not always be influenced by another species’ attachment (Cowan MM et al.,1991, McEldowney S et al.,1987). Neutral interactions could result from separate binding sites on the substrate for each species, including multiple high- and low-affinity sites within species (Gibbons RJ et al.,1983, Korber DR et al.,1994). For example, a nonmotile mutant strain of Pseudomonas fluorescens attached to glass independently of the parent strain, suggesting different binding sites (, Korber DR et al.,1994). Adhesion interactions depend on the surface and species involved (McEldowney S, Fletcher M et al.,1987), leading to variations in adhesion mechanisms for different substrates. Vibrio proteolytica’s adhesion to hydrophobic substrates was inhibited by proteases, while hydrophilic substrates were unaffected (Paul JH et al.,1985).

6.8 Commensal Interactions in Biofilm Stabilization

One intriguing aspect of biofilm stabilization is that it can be seen as a commensal interaction, where one species benefits from another’s ability to form a stable film.

6.8.1 Types of Commensal Interactions in Biofilms

Commensal interactions in biofilms occur when one population benefits without affecting the other. Oxygen consumption by aerobic/facultative microorganisms creates oxygen gradients, enabling the growth of obligate anaerobes (Costerton JW et al.,1994,De Beer D et al.,1994, Lewandowski Z et al.,1994). This interaction is crucial for sulfate-reducing bacteria growth in anaerobic microniches, contributing to microbially-induced corrosion (Hamilton WA. et al.,1985, Lee W, Lewandowski Z et al.,1993).

Mixed Biofilm
Fig 7 Commensalism
6.8.2 Commensalism in Dental Plaque Development

In dental plaque development, commensalism involving oxygen consumption occurs, with aerobic bacteria declining, and anaerobic Veillonella spp. predominating in deeper layers, while aerobic species dominate upper layers (Ritz HL et al.,1967 1969). Also in waste-water treatment biofilms, layering of aerobic and anaerobic bacterial species illustrates commensal interactions (Alleman JE, Veil JA et al.,1982). Other commensal interactions like substrate provision may be common in biofilms but require further research (Ritz HL et al.,1967).

7. Symbiotic Relationships and Enhanced Growth in Bacterial-Associated Algal Biofilms

Bacteria initiate EPS matrix formation in algal biofilms, leading to symbiotic relationships and competition with algae (Davis LS, Hoffmann JP et al.,1990, Mack WN et al., 1975). Studies show significant benefits of bacterial presence for algal recruitment and growth (Irving TE et al.,2011, Hodoki Y et al.,2005, Sekar R et al., 2004, Holmes PE et al., 1986). Algal biomass increases with rising pre-conditioned bacterial biofilm concentrations (Hodoki Y et al.,2005). Mixed community biofilms exhibit higher algal growth compared to pure algal cultures (Holmes PE et al., 1986).

Algae biofilms in non-sterile wastewater show increased thickness, switch to a sessile state, and resist shear stress better due to bacteria and EPS presence (Irving TE et al.,2011).Irving and Allen (Irving TE et al.,2011) demonstrated a nine-fold increase in algae biofilm thickness when grown on non-sterile secondary wastewater effluent compared to sterile wastewater. They also found that in the presence of unsterile wastewater, algae cells had a greater tendency to switch from a planktonic (free-floating) to a sessile (attached) state and exhibited enhanced resistance to shear stress.

Fig 8 Bacterial association with microalgae

8. Impactful Roles of Biofilm in Chemistry and Environmental Restoration

Biofilms are valuable in chemical synthesis processes, including ethanol, poly-3-hydroxybutyrate, and benzaldehyde production (Kunduru and Pometto, 1996; Li et al., 2006; Zhang et al., 2004). They also play essential roles in wastewater treatment, phenol bioremediation, and the degradation of dinitrophenols and toxic metals in environmental remediation (Lendenmann et al., 1998; Luke and Burton, 2001; Nicolella et al., 2000; Singh and Cameotra, 2004). Biofilms are highly resilient and serve as valuable tools for beneficial purposes in various chemical processes and environmental applications.

9. Conclusion

Biofilms represent dynamic and well-organized microbial communities that play a vital role in various ecological and industrial processes. They form through a complex developmental process, transitioning bacteria from a free-floating state to sedentary, multi-layered communities. The formation of biofilms involves various factors, such as surface characteristics, chemotaxis, and horizontal gene transfer, which contribute to the unique three-dimensional architecture and stability of these communities.
Interspecies interactions within biofilms further enhance their complexity, leading to commensal relationships and symbiotic associations that benefit different microbial species within the community. Bacteria initiate biofilm formation, and their presence fosters the recruitment and growth of algae, creating symbiotic relationships within mixed community biofilms.
The significance of biofilms extends beyond microbial interactions, as they also find applications in chemical synthesis and environmental restoration. Biofilms play crucial roles in wastewater treatment, bioremediation of contaminated sites, and the production of various chemicals, showcasing their potential as valuable tools for beneficial purposes.
Overall, the study of biofilms provides valuable insights into the intricacies of microbial communities, their interactions, and their adaptability to diverse environments. Understanding biofilm formation and behaviour can lead to the development of innovative strategies for improving industrial processes, environmental management, and human health. As researchers delve deeper into the world of biofilms, they uncover the fascinating intricacies of these dynamic microbial communities and their impact on the ecosystem and human activities.

References:

  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews. 2002 Apr;15(2):167-93.
  • Chmielewski RA, Frank JF. A predictive model for heat inactivation of Listeria monocytogenes biofilm on buna-N rubber. LWT-Food Science and Technology. 2006 Jan 1;39(1):11-9.
  • Dunny GM, Leonard BA. Cell-cell communication in gram-positive bacteria. Annual review of microbiology. 1997 Oct;51(1):527-64.
  • Plamann L, Li Y, Cantwell B, Mayor J. The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. Journal of bacteriology. 1995 Apr;177(8):2014-20.
  • Shimkets LJ. Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annual Reviews in Microbiology. 1999 Oct;53(1):525-49.
  • Wall D, Kaiser D. Type IV pili and cell motility. Molecular microbiology. 1999 Apr;32(1):01-10.
  • Fukuda AK, Iba HI, Okada YO. Stalkless mutants of Caulobacter crescentus. Journal of Bacteriology. 1977 Jul;131(1):280-7.
  • Hecht GB, Newton A. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. Journal of bacteriology. 1995 Nov;177(21):6223-9.
  • Trun NJ, Gottesman S. On the bacterial cell cycle: Escherichia coli mutants with altered ploidy. Genes & development. 1990 Dec 1;4(12a):2036-47.
  • Quon KC, Marczynski GT, Shapiro L. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell. 1996 Jan 12;84(1):83-93.
  • Wu J, Newton A. Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Molecular microbiology. 1997 Apr;24(2):233-9.
  • Götz F. Staphylococcus and biofilms. Molecular microbiology. 2002 Mar;43(6):1367-78.
  • Lasa I, Penadés JR. Bap: a family of surface proteins involved in biofilm formation. Research in microbiology. 2006 Mar 1;157(2):99-107.
  • Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular microbiology. 1998 Oct;30(2):285-93.
  • Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Molecular microbiology. 1999 Nov;34(3):586-95.

Reference:

  • Lemon KP, Higgins DE, Kolter R. Flagellar motility is critical for Listeria monocytogenes biofilm formation. Journal of bacteriology. 2007 Jun 15;189(12):4418-24.
  • O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annual Reviews in Microbiology. 2000 Oct;54(1):49-79.
  • Varga JJ, Nguyen V, O’Brien DK, Rodgers K, Walker RA, Melville SB. Type IV pili‐dependent gliding motility in the Gram‐positive pathogen Clostridium perfringens and other Clostridia. Molecular microbiology. 2006 Nov;62(3):680-94.
  • Baier RE. Substrata influences on adhesion of microorganisms and their resultant new surface properties. Adsorption of microorganisms to surfaces. 1980:59-104.
  • Characklis WG, Cooksey KE. Biofilms and microbial fouling. InAdvances in applied microbiology 1983 Jan 1 (Vol. 29, pp. 93-138). Academic Press.
  • Van Loosdrecht MC, Heijnen JJ, Eberl H, Kreft J, Picioreanu C. Mathematical modelling of biofilm structures. Antonie van Leeuwenhoek. 2002 Dec;81:245-56.
  • Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes‐Jørgensen A, Molin S, Tolker‐Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular microbiology. 2003 Jun;48(6):1511-24.
  • McClaine JW, Ford RM. Reversal of flagellar rotation is important in initial attachment of Escherichia coli to glass in a dynamic system with high-and low-ionic-strength buffers. Applied and environmental microbiology. 2002 Mar;68(3):1280-9.
  • Vigeant MA, Ford RM, Wagner M, Tamm LK. Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Applied and environmental microbiology. 2002 Jun;68(6):2794-801.
  • Findenegg GH. JN Israelachvili: Intermolecular and Surface Forces (With Applications to Colloidal and Biological Systems). Academic Press, London, Orlando, San Diego, New York, Toronto, Montreal, Sydney, Tokyo 1985. 296 Seiten, Preis: $65.00.
  • Soni KA, Balasubramanian AK, Beskok A, Pillai SD. Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media. Current microbiology. 2008 Jan;56:93-7.

Reference:

  • Katsikogianni MG, Missirlis YF. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions. Acta biomaterialia. 2010 Mar 1;6(3):1107-18.
  • Hong Y, Brown DG. Electrostatic behavior of the charge-regulated bacterial cell surface. Langmuir. 2008 May 6;24(9):5003-9.
  • Bullitt E, Makowski L. Structural polymorphism of bacterial adhesion pili. Nature. 1995 Jan 12;373(6510):164-7.
  • Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M. Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Applied and environmental microbiology. 2002 Feb;68(2):728-37.
  • Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Research in microbiology. 2005 May 1;156(4):506-14.
  • Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW. Surface thermodynamics of bacterial adhesion. Applied and environmental microbiology. 1983 Jul;46(1):90-7.
  • Davidson CA, Lowe CR. Optimisation of polymeric surface pre‐treatment to prevent bacterial biofilm formation for use in microfluidics. Journal of Molecular Recognition. 2004 May;17(3):180-5.
  • Kim HJ, Du W, Ismagilov RF. Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg (II). Integrative Biology. 2011 Feb 8;3(2):126-33.
  • Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proceedings of the National Academy of Sciences. 2008 Nov 25;105(47):18188-93.
  • Eun YJ, Weibel DB. Fabrication of microbial biofilm arrays by geometric control of cell adhesion. Langmuir. 2009 Apr 21;25(8):4643-54.
  • Flickinger ST, Copeland MF, Downes EM, Braasch AT, Tuson HH, Eun YJ, Weibel DB. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. Journal of the American Chemical Society. 2011 Apr 20;133(15):5966-75.

References:

  • Boedicker JQ, Vincent ME, Ismagilov RF. Supporting Information for Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed Engl. 2009;48(32):5908-11.
  • Vincent ME, Liu W, Haney EB, Ismagilov RF. Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chemical Society Reviews. 2010;39(3):974-84.
  • Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS bulletin. 2011 May;36(5):347-55.
  • Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology & Medical Microbiology. 2010 Aug 1;59(3):253-68.
  • Parsek MR, Greenberg EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in microbiology. 2005 Jan 1;13(1):27-33.
  • Steinmoen H, Knutsen E, Håvarstein LS. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proceedings of the National Academy of Sciences. 2002 May 28;99(11):7681-6.
  • Lewis KI. Riddle of biofilm resistance. Antimicrobial agents and chemotherapy. 2001 Apr 1;45(4):999-1007.
  • Jesaitis AJ, Franklin MJ, Berglund D et al (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339
  • Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science. 2006 Feb 24;311(5764):1113-6.
  • O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular microbiology. 1998 Oct;30(2):295-304.
  • Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular microbiology. 1998 Oct;30(2):285-93.
  • Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Molecular microbiology. 1999 Nov;34(3):586-95.
  • Stelmack PL, Gray MR, Pickard MA. Bacterial adhesion to soil contaminants in the presence of surfactants. Applied and Environmental Microbiology. 1999 Jan 1;65(1):163-8.

Reference:

  • Koonin EV, Makarova KS, Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification. Annual Reviews in Microbiology. 2001 Oct;55(1):709-42.
  • Keyhani NO, Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii: molecular cloning, isolation, and characterization of a periplasmic chitodextrinase. Journal of Biological Chemistry. 1996 Dec 27;271(52):33414-24.
  • Roberts AP, Pratten J, Wilson M, Mullany P. Transfer of a conjugative transposon, Tn 5397 in a model oral biofilm. FEMS microbiology letters. 1999 Aug 1;177(1):63-6.
  • Guo M, Ye J, Gao D, Xu N, Yang J. Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnology advances. 2019 Jan 1;37(1):259-70.
  • Niehus R, Mitri S, Fletcher AG, Foster KR. Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nature communications. 2015 Nov 23;6(1):8924.
  • Dougherty K, Smith BA, Moore AF, Maitland S, Fanger C, Murillo R, Baltrus DA. Multiple phenotypic changes associated with large-scale horizontal gene transfer. PloS one. 2014 Jul 21;9(7):e102170.
  • Desmond E, Brochier-Armanet C, Gribaldo S. Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure. BMC Evolutionary Biology. 2007 Dec;7(1):1-3.
  • McEldowney S, Fletcher M. Adhesion of bacteria from mixed cell suspension to solid surfaces. Archives of Microbiology. 1987 Jun;148:57-62.
  • Belas MR, Colwell RR. Adsorption kinetics of laterally and polarly flagellated Vibrio. Journal of bacteriology. 1982 Sep;151(3):1568-80.
  • Kolenbrander PE. Surface recognition among oral bacteria: multigeneric coaggregations and their mediators. Critical reviews in microbiology. 1989 Jan 1;17(2):137-59.
  • Ciardi JE, McCray GF, Kolenbrander PE, Lau A. Cell-to-cell interaction of Streptococcus sanguis and Propionibacterium acnes on saliva-coated hydroxyapatite. Infection and immunity. 1987 Jun;55(6):1441-6.
  • Schwarz SU, Ellen RP, Grove DA. Bacteroides gingivalis-Actinomyces viscosus cohesive interactions as measured by a quantitative binding assay. Infection and immunity. 1987 Oct;55(10):2391-7.
  • Lamont RJ, Rosan B. Adherence of mutans streptococci to other oral bacteria. Infection and immunity. 1990 Jun;58(6):1738-43.

References:

  • Cowan MM, Warren TM, Fletcher M. Mixed‐species colonization of solid surfaces in laboratory biofilms. Biofouling. 1991 Feb 1;3(1):23-34.
  • Gibbons RJ, Moreno EC, Etherden I. Concentration-dependent multiple binding sites on saliva-treated hydroxyapatite for Streptococcus sanguis. Infection and Immunity. 1983 Jan;39(1):280-9.
  • Korber DR, Lawrence JR, Caldwell DE. Effect of motility on surface colonization and reproductive success of Pseudomonas fluorescens in dual-dilution continuous culture and batch culture systems. Applied and environmental microbiology. 1994 May;60(5):1421-9.
  • Paul JH, Jeffrey WH. Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Applied and environmental microbiology. 1985 Aug;50(2):431-7.
  • Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. Biofilms, the customized microniche. Journal of bacteriology. 1994 Apr;176(8):2137-42.
  • De Beer D, Stoodley P, Roe F, Lewandowski Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and bioengineering. 1994 May;43(11):1131-8.
  • Lewandowski Z. Dissolved oxygen gradients near microbially colonized surfaces. Biofouling and biocorrosion in industrial water systems. 1994 Apr 15:175-88.
  • Hamilton WA. Sulphate-reducing bacteria and anaerobic corrosion. Annual review of microbiology. 1985 Oct;39(1):195-217.
  • Lee W, Lewandowski Z, Morrison M, Characklis WG, Avci R, Nielsen PH. Corrosion of mild steel underneath aerobic biofilms containing sulfate‐reducing bacteria part II: At high dissolved oxygen concentration. Biofouling. 1993 Nov 1;7(3):217-39.
  • Ritz HL. Microbial population shifts in developing human dental plaque. Archives of Oral Biology. 1967 Dec 1;12(12):1561-8.
  • Ritz HL. Fluorescent antibody staining of Neisseria, Streptococcus and Veillonella in frozen sections of human dental plaque. Archives of Oral Biology. 1969 Sep 1;14(9):1073-IN18.
  • Alleman JE, Veil JA, Canaday JT. Scanning electron microscope evaluation of rotating biological contactor biofilm. Water research. 1982 Jan 1;16(5):543-50.
  • Davis LS, Hoffmann JP, Cook PW. SEASONAL SUCCESSION OF ALGAL PERIPHYTON FROM A WASTEWATER TREATMENT FACILITY 1. Journal of Phycology. 1990 Dec;26(4):611-7.

References:

  • Mack WN, Mack JP, Ackerson AO. Microbial film development in a trickling filter. Microbial ecology. 1975 Sep;2:215-26.
  • Irving TE, Allen DG. Species and material considerations in the formation and development of microalgal biofilms. Applied microbiology and biotechnology. 2011 Oct;92:283-94.
  • Hodoki Y. Bacteria biofilm encourages algal immigration onto substrata in lotic systems. Hydrobiologia. 2005 May;539:27-34.
  • Sekar R, VenugopalanVP, Nanda kumarK, Nair KVK, Rao VNR. Early states of biofilm succession in alentic freshwater environment. Hydrobiologia 2004;512:97–108.
  • Holmes PE. Bacterial enhancement of vinyl fouling by algae. Applied and environmental microbiology. 1986 Dec;52(6):1391-3.
  • Kunduru MR, Pometto AL. Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. Journal of industrial microbiology. 1996 Apr;16:249-56.
  • Lendenmann U, Spain JC, Smets BF. Simultaneous biodegradation of 2, 4-dinitrotoluene and 2, 6-dinitrotoluene in an aerobic fluidized-bed biofilm reactor. Environmental science & technology. 1998 Jan 1;32(1):82-7.
  • Flemming HC, Wingender J. The biofilm matrix. Nature reviews microbiology. 2010 Sep;8(9):623-33
Microalgae: A Powerful Tool for Climate Change and Water Pollution Mitigation Algal Biotechnology

Microalgae: A Powerful Tool for Climate Change and Water…

Global climate change has emerged as a pressing global issue in contemporary times. The primary contributors to this phenomenon are the rising levels of greenhouse gases, predominantly originating from human activities and the operations of power plants (Watanabe Y, et., al; 2017).

Human activities, such as fossil fuel usage and industrial production, as well as natural processes involving the Earth’s oceans, soil, plants, animals, and volcanoes, release greenhouse gases, including CO2, CH4, and N2O, into the atmosphere. However, since the Industrial Revolution, human activities have emerged as the primary contributors to greenhouse gas emissions (Baba Mohammad et al., 2015; Mirzaei et al., 2015).

Specific Sources of CO2 Emissions

According to Le Quere (Le Quere et al. 2013, 2015), the combustion of fossil fuels, namely coal, natural gas, and oil, is responsible for about 87% of human-produced CO2 emissions. Among these fuels, coal combustion contributes to 43% of CO2 emissions from fuel burning, followed by oil at 36% and natural gas at 20%. Power plants, vehicles, aircraft, and industrial facilities primarily use these fossil fuels to generate heat, electricity, and power. The largest share of man-made CO2 emissions, approximately 41%, originates from power generation and heating activities. Transportation ranks as the second largest source, accounting for around 22% of CO2 emissions resulting from fossil fuel burning. Industries contribute approximately 20% of CO2 emissions from fossil fuel combustion. Other human-related sources include deforestation and land-use changes, contributing to roughly 9%, and industrial processes like cement manufacturing, which account for around 4%.

The emission of CO2 into the atmosphere involves not only human activities but also natural processes. According to a study conducted by Denman et al. In 2007, researchers found that natural sources significantly contribute to CO2 emissions. The Earth’s oceans, through the exchange between the ocean and the atmosphere, account for a substantial 42.84% of these natural emissions. Additionally, sources like plant and animal respiration, soil respiration, and decomposition contribute to 28.56% of the total CO2 emissions generated naturally.

CO2: A major Green House Gas

Research efforts are ongoing and focused on tackling global warming by actively mitigating greenhouse gas emissions. While carbon dioxide naturally exists as a greenhouse gas, the concentration of CO2 in the atmosphere has undergone a substantial increase because of industrialization and human activities (National Research Council et al.,2011; Siegenthaler U et al., 2005; Chang EH et al, 2003).

According to a report by the French National Center for Scientific Research, atmospheric CO2 levels have soared to 380 parts per million (ppm), marking a twofold increase compared to the previous century (Morais and Costa, et al.,2007). The notable surge in CO2 concentration directly attributes to the combination of population growth and industrialization. Future projections indicate that by 2100, CO2 emissions in the atmosphere could reach a staggering 26 billion tons, surpassing the emissions recorded in the past century by 18.5 billion tons (Chiu et al., 2008).

Power plants play a significant role in releasing CO2 into the atmosphere through the combustion of fossil fuels (Benemann JR et al., 1993). To tackle the challenge of CO2 emissions from this source, it is imperative to prioritize efforts in enhancing the efficiency of power plant generation and transitioning towards cleaner and more sustainable alternatives.

Biological CO2 Sequestration Technology/Method

In 1990, the Research Institute of Innovative Technology for the Earth (RITE) launched the Biological CO2 Fixation and Utilization Project under the sponsorship of the Ministry of International Trade and Industry (MITI). The New Energy and Industrial Technology Development Organization (NEDO) commissioned this pioneering initiative (Murakami, N, et al., 1996).

Among the array of available CO2 capture methods, the biological approach stands out as an attractive alternative. This approach harnesses the power of photosynthesis, which enables the conversion of carbon dioxide into organic matter, fueled by sunlight as an energy source. In this regard, photosynthetic microorganisms have emerged as a preferred choice, owing to their remarkable characteristics. These microorganisms possess the unique ability to assimilate CO2 into carbohydrates, lipids, and proteins using solar energy. They exhibit higher rates of CO2 fixation compared to land plants and offer better compatibility for integrating CO2 removal systems into industrial processes when compared to other photosynthetic systems involving higher plants.

Algae potential players for CO2 Sequestration.

Within the realm of photosynthesis, there are two fundamental processes at play: the light-dependent reaction, which entails a series of intricate steps reliant on the availability of light, and the light-independent reaction, also recognized as carbon fixation. In the context of microalgae, they have developed a specialized mechanism known as the CO2 concentrating mechanism (CCM) to secure an ample reservoir of inorganic carbon required to support cellular growth and proliferation during the process of photosynthesis (Brueggeman et al., 2012).

The CO2 concentrating mechanism (CCM) plays a crucial role in microalgae by effectively increasing the concentration of CO2 at the active site of the enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase oxygenase). These microorganisms possess specialized inorganic carbon transporters located in the plasma membrane and thylakoid membrane, each with varying affinities and flux rates for HCO3 (bicarbonate) and CO2 (Beardall and Raven, 2017). Carbonic anhydrase (CA) is responsible for converting HCO3 into CO2, and the proper functioning of both CA and the CCM is highly dependent on the availability of CO2 (Zou et al., 2004; Zhou et al., 2016) See Fig 1.

Carbon-capture-mechanism-CCM-by-algae  for climate change

As a result, the availability of CO2 intricately ties to the activity of these enzymes. While elevated CO2 levels can promote the growth of algae, they may also impede the activity of carbonic anhydrase (CA) and the functioning of the CO2 concentrating mechanism (CCM) (Xia and Gao, 2005).

Microalgae surpass terrestrial plants in their efficiency in converting CO2 into organic compounds. They exhibit approximately 10 times greater efficacy in CO2 fixation compared to land plants.

Algae cultivation in Wastewater an alternative approach for wastewater treatment & CO2 Sequestration.

The combination of biological CO2 fixation using microalgae and wastewater treatment presents significant advantages in terms of both economic feasibility and environmental sustainability. By cultivating microalgae in nutrient-rich wastewater, these microorganisms have ample access to the nutrients needed for their growth. As they flourish, microalgae absorb CO2 and convert it into biomass, which can be utilized as a valuable feedstock for biofuel production (Kannan DC et., 2022, Magar et al., 2022).

The integration of CO2 capture, wastewater treatment, and biofuel production creates a synergistic and compelling approach. It not only contributes to reducing CO2 emissions by capturing and utilizing CO2 but also addresses the crucial requirement for effective wastewater treatment. This combined strategy demonstrates a promising solution that not only helps mitigate climate change but also promotes the efficient utilization of resources while generating a valuable end product (Wang B et al., 2008).

The integration of microalgae in wastewater treatment presents a sustainable and eco-conscious solution that minimizes or eliminates the requirement for chemical treatments in wastewater plants. This groundbreaking technology utilizes the inherent abilities of microalgae to effectively extract nutrients, specifically nitrogen and phosphorus compounds, from wastewater. In addition to facilitating CO2 capture through photosynthesis, this approach successfully tackles the pressing challenge of nutrient removal in wastewater.

Mechanism of Microalgae-based Wastewater Treatment

Microalgae offer an invaluable solution to address the challenge of microcontaminants found in wastewater effluents, which can pose significant risks when they enter drinking water treatment processes (Beelen ES et al., 2007). By efficiently eliminating these microcontaminants, microalgae greatly improve the overall quality of water. Additionally, microalgae play a vital role in reducing nutrient levels, such as carbon, nitrogen, and phosphorus, while simultaneously releasing significant amounts of oxygen. This dual action not only aids in the decomposition of organic matter by bacteria but also helps mitigate odor-related issues commonly associated with wastewater (De Pauw N et al., 1983).

The abundant availability of nutrients in municipal wastewater makes it an ideal resource for harnessing the potential of microalgae. Furthermore, the close proximity of wastewater treatment plants to power plants, which generate significant amounts of CO2 in flue gases through the combustion of fossil fuels, further emphasizes the benefits of this approach. This strategic positioning enables the efficient utilization of readily available CO2 resources.

Microalgae cultivation in wastewater presents versatile opportunities, allowing for the use of either open or closed systems. These approaches enable precise control over the growth media, optimizing the removal of nutrients from wastewater and maximizing the production of valuable microalgae biomass. This customized approach ensures effective and sustainable wastewater treatment while generating valuable resources in the form of microalgae biomass.

Open ponds

High-rate algal ponds, commonly known as HRAPs or raceway ponds, are the prevailing large-scale production systems in practice. These open, shallow ponds have been employed since the 1950s and utilize a paddle wheel to ensure the circulation of algae and nutrients. While raceway ponds are relatively affordable to construct and operate, their productivity is often hindered by challenges such as contamination, inadequate mixing, the presence of dark zones, and inefficient utilization of CO2 (Chisti, 2007; Mata et al., 2010).

In theory, raceway ponds should achieve production levels of 50–60 g m−2 day−1, and there have been instances of reaching such levels in a single day (Sheehan et al., 1998). However, in practical applications, it proves difficult to attain even 10–20 g m−2 day−1 productivity (Shen et al., 2009). While the high evaporation rate of open ponds is often perceived as a limitation, it does provide some benefits by aiding in temperature regulation through evaporative cooling (U.S. DOE, 2010).

Moreover, the HRP system’s simplicity and symbiotic nature make it a perfect candidate for emulating natural ecosystems in laboratory and field settings, aligning harmoniously with the principles of ecological engineering (Cunningham M et al., 2010).

An important conclusion drawn from cost analysis studies conducted by the U.S. Department of Energy’s Aquatic Species Program was that there are limited prospects for alternative systems to replace the open pond approach, particularly when considering the need for low fuel costs (Sheehan et al., 1998).

Closed reactors

According to Chisti (2007), tubular photobioreactors are the exclusive type of closed systems used on a large scale. These reactors come in vertical, horizontal, and helical designs, with helical ones being regarded as the easiest to expand (Carvalho et al., 2006). In comparison to open ponds, tubular photobioreactors offer several advantages such as improved control over pH and temperature, better protection against contamination, enhanced mixing, reduced evaporation, and higher cell densities (Mata et al., 2010).

Reported productivities typically range from 20 to 40 grams per square meter per day (Shen et al., 2009). However, despite these benefits, tubular reactors have not gained significant usage due to various challenges. Issues such as the accumulation of toxic oxygen, unfavorable pH and CO2 gradients, overheating, bio-fouling, and high material and maintenance costs have limited their widespread adoption (Mata et al., 2010; Molina Grima et al., 1999). Among these challenges, the removal of oxygen is considered one of the most difficult problems to overcome, particularly when scaling up the system. It effectively imposes limitations on the length of tubes or panels and necessitates a more complex or modular design (Carvalho et al., 2006

How Algae CO2 Sequestration Potential is Calculated?

To tackle the challenge of reducing CO2 emissions, researchers have explored various avenues, which can be broadly divided into two groups: (i) methods based on chemical reactions and (ii) biological methods (Benemann JR et al., 1993, Wang B et al.,2008). Among these, biological processes have emerged as compelling solutions to combat global warming, attracting significant attention from the scientific community (Yun YS et al., 1997).

Chisti emphasizes that microalgal biomass typically consists of around 50% carbon, allowing for the capture of approximately 1.83 kg of CO2 per kilogram of biomass produced (Chisti et al., 2007). In the field of CO2 capture using microalgae, many studies rely on measuring CO2 concentrations at the inlet and outlet of cultivation reactors. However, this approach may pose challenges as it does not guarantee that all consumed CO2 is solely attributed to the growth of microalgae. Alternatively, estimating the carbon content can provide a more precise assessment of the CO2 consumption by microalgae cells, assuming that the culture medium does not contain carbon sources other than CO2 (Yun YS et al., 1997; Tang D et al., 2011).

Based on this premise, researchers can estimate the rate of CO2 capture (RCO2) using the following formula.

RCO2 = P·CCO2·MCO2/MC,

 where P represents biomass productivity (g L-1 day-1), CCO2 denotes the carbon content of microalgae biomass obtained from CO2, and MCO2 and MC correspond to the molecular weights of carbon dioxide and carbon, respectively.

CO2 concentration and CO2 uptake efficiency of Microalgae

The cultivation of photoautotrophic microalgae relies on carbon dioxide (CO2) as the primary source of carbon. Despite the physiological significance of CO2 concentration on microalgae cell growth, researchers have conducted limited research to analyze CO2 uptake under relevant process conditions, indicating the need for further investigation (Cheng L et al., 2006). Atmospheric air contains minimal amounts of CO2, which cannot sufficiently support microalgae cell growth due to limited mass transfer driving forces. To overcome this challenge, researchers can obtain CO2 from pure sources or harness it from flue gases, thereby addressing the environmental concern associated with CO2 capture (Acién Fernández FG et al., 2012).

Microalgae and cyanobacteria have the ability to adapt their photosynthetic properties, including the carbon concentrating mechanism (CCM), to high concentrations of CO2 (Baba et al., 2011). Certain microalgae and cyanobacteria species, such as Chlamydomonas reinhardtii, can quickly acclimate to a CO2 concentration of 20% within a few days (Hanawa et al., 2007).

When developed at air-equilibrated CO2 levels, microalgae and cyanobacteria can effectively utilize low levels of dissolved inorganic carbon (DIC). Cyanobacteria actively increase calcite deposition at higher CO2 concentrations, which plays a crucial role in CO2 removal. This increase leads to a 1.5- to 2.5-fold enhancement in CO2 fixation rates (Ramanan et al., 2009, 2010; Badger and Price, 1994).

Enhancing CO2 Mass Transfer with Microbubbles

Some of the important physical factors that change the mass transfer rate of CO2 from the air to liquid are air bubble size, the pore size of the sparger, flow rate, air holding time of the liquid system, etc. Microbubble size is a very essential aspect to enhance the CO2 mass transfer rate (McGinn PJ et al., 2011). However, high CO2 concentrations hinder the growth of microalgae and cyanobacteria (Ramanan et al., 2010).

Previous research has reported that optimal CO2 fixation occurs at concentrations ranging from 2% to 5% CO2, with 3% CO2 being approximately 489 times higher than the atmospheric CO2concentration (Douskova et al., 2009; Ibn-Mohammed et al., 2013). These studies indicate that many algal strains may not require undermined haphazard high CO2 feeding. Excess-supplied CO2 mostly goes to waste, and it is necessary to determine the critical CO2 concentration required by each strain.(Chaitanya Magar et al. 2019, Rambhiya, S. J. et al 2021).

Conclusion

In summary, the utilization of microalgae cultures presents a promising solution for both CO2 capture and biomass production. By cultivating microalgae in wastewater media, it becomes possible to remove significant pollutants from the wastewater while efficiently capturing CO2 and converting it into valuable biomass feedstock. The selection of suitable algae strains and optimization of key parameters such as pH, temperature, and CO2 concentration is crucial in maximizing CO2 fixation efficiency in biological systems. Certain algae species, such as Scenedesmus dimorphus, Scenedesmus incrassatulus, Chlorella sp., and Scenedesmus obliquus, demonstrate remarkable CO2 fixation rates.

Moreover, integrating CO2 capture from flue gases with microalgae-based wastewater treatment holds immense potential for sustainable biofuel production. This integrated approach offers the opportunity to address environmental concerns by capturing CO2 emissions, treating wastewater, and producing valuable biofuel resources concurrently. To enhance the efficiency and effectiveness of microalgae cultivation, the development of comprehensive dynamic models becomes essential. These models should accurately depict the growth rates of microalgae under various limiting factors, enabling the design of optimized control systems and the identification of optimal operational conditions.

By advancing our understanding of the complex interactions and dynamics involved in microalgae-based systems, we can unlock the full potential of this technology. Ultimately, this will contribute to reducing reliance on fossil fuels, mitigating CO2 emissions, and promoting a more sustainable and environmentally friendly approach to energy and wastewater management.

References:

Razzak SA, Ali SA, Hossain MM, deLasa H. Biological CO2 fixation with production of microalgae in wastewater–a review. Renewable and Sustainable Energy Reviews. 2017 Sep 1;76:379-90.

Babamohammadi S, Shamiri A, Aroua MK. A review of CO2 capture by absorption in ionic liquid-based solvents. Reviews in Chemical Engineering. 2015 Aug 1;31(4):383-412.

Le Quéré C. C., Andres, RJ, Boden, T., Conway, T.

Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA. Global carbon budget 2015. Earth System Science Data. 2015 Dec 7;7(2):349-96.

Menon S, Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D. Couplings between changes in the climate system and biogeochemistry. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States); 2007 Oct 1.

National Research Council. Advancing the science of climate change. National Academies Press; 2011 Jan 10.

Siegenthaler U, Stocker TF, Monnin E, Luthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J. Stable carbon cycle climate relationship during the Late Pleistocene. Science. 2005 Nov 25;310(5752):1313-7.

Chang EH, Yang SS. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Botanical Bulletin of Academia Sinica. 2003;44.

De Morais MG, Costa JA. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of biotechnology. 2007 May 1;129(3):439-45.

Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource technology. 2008 Jun 1;99(9):3389-96.

Benemann JR. Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy conversion and management. 1993 Sep 1;34(9-11):999-1004.

References:

Murakami,M., N.Yamaguchil H.Murakami, T.Nishide, T.Muranaka, F.Yamada and Y.Takimoto (1996). Over-expression of carbonic anhydrase and its localization in carboxysome in cyanobacteria Synechococcus sp. PCC7942. Abstract Paper at the annual meeting of the Societ) for Fermentation and Bioengineering Japan. No. 1059.

Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I. Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. The Plant Cell. 2012 May;24(5):1860-75.

Beardall J, Raven JA. Cyanobacteria vs green algae: which group has the edge?. Journal of Experimental Botany. 2017 Jun 22;68(14):3697-9.

Zhou W, Sui Z, Wang J, Hu Y, Kang KH, Hong HR, Niaz Z, Wei H, Du Q, Peng C, Mi P. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta). Photosynthesis Research. 2016 Jun;128:259-70.

Kannan DC, Magar CS. Microalgal biofuels: Challenges, status and scope. InAdvanced Biofuel Technologies 2022 Jan 1 (pp. 73-118). Elsevier.

XIA JR, GAO KS. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. Journal of Integrative Plant Biology. 2005 Jun;47(6):668-75.

Wang B, Li Y, Wu N, Lan CQ. CO2 bio-mitigation using microalgae. Applied microbiology and biotechnology. 2008 Jul;79:707-18.

Beelen ES. Municipal wastewater treatment plant (WWTP) effluents: a concise overview of the occurrence of organic substances. Association of River Waterworks-RIWA; 2007.

De Pauw N, Van Vaerenbergh E. Microalgal wastewater treatment systems: potentials and limits. Phytodepuration and the Employment of the Biomass Produced. Centro Ric. Produz, Animali, Reggio Emilia, Italy. 1983:211-87.

Chisti Y. Biodiesel from microalgae. Biotechnology advances. 2007 May 1;25(3):294-306.

Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews. 2010 Jan 1;14(1):217-32.

References:

Sheehan J, Dunahay T, Benemann J, Roessler P. Look back at the US department of energy’s aquatic species program: biodiesel from algae; close-out report. National Renewable Energy Lab., Golden, CO.(US); 1998 Jul 1.

Doe US. National algal biofuels technology roadmap. US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. 2010 May.

Cunningham M, Heim C, Rauchenwald V. Algae production in wastewater treatment: prospects for Ballen. LoCal-RE Summer Research Program. 2010 Aug 26;15.

Carvalho AP, Meireles LA, Malcata FX. Microalgal reactors: a review of enclosed system designs and performances. Biotechnology progress. 2006;22(6):1490-506.

Fernández FA, Camacho FG, Chisti Y. Photobioreactors: light regime, mass transfer, and scaleup. InProgress in industrial microbiology 1999 Jan 1 (Vol. 35, pp. 231-247). Elsevier.

Shen Y, Yuan W, Pei ZJ, Wu Q, Mao E. Microalgae mass production methods. Transactions of the ASABE. 2009;52(4):1275-87.

Yun YS, Lee SB, Park JM, Lee CI, Yang JW. Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology. 1997 Aug;69(4):451-5.

Tang D, Han W, Li P, Miao X, Zhong J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource technology. 2011 Feb 1;102(3):3071-6.

Cheng L, Zhang L, Chen H, Gao C. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and purification technology. 2006 Jul 15;50(3):324-9.

Acién Fernández FG, González-López CV, Fernández Sevilla JM, Molina E. Conversion of CO 2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal?. Applied microbiology and biotechnology. 2012 Nov;96:577-86.

Baba M, Suzuki I, Shiraiwa Y. Proteomic analysis of high CO2 inducible extracellular proteins in the unicellular green alga, Chlamydomonas reinhardtii. Plant and cell physiology. 2011 Aug 1;52(8):1302-14.

References:

Hanawa, Y., 2007. Study on a CO2 Sensing Mechanism by the Expression Analysis of a High CO2 Inducible H43 Gene In Chlamydomonas reinhardtii.

Ramanan R, Kannan K, Vinayagamoorthy N, Ramkumar KM, Sivanesan SD, Chakrabarti T. Purification and characterization of a novel plant-type carbonic anhydrase from Bacillus subtilis. Biotechnology and Bioprocess Engineering. 2009 Feb;14:32-7.

Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T. Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresource technology. 2010 Apr 1;101(8):2616-22.

Badger MR, Price GD. The role of carbonic anhydrase in photosynthesis. Annual review of plant biology. 1994 Jun;45(1):369-92.

McGinn PJ, Dickinson KE, Bhatti S, Frigon JC, Guiot SR, O’Leary SJ. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynthesis research. 2011 Sep;109:231-47.

Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Applied microbiology and biotechnology. 2009 Feb;82:179-85.

Ibn-Mohammed T, Greenough R, Taylor S, Ozawa-Meida L, Acquaye A. Operational vs. embodied emissions in buildings—A review of current trends. Energy and Buildings. 2013 Nov 1;66:232-45.

Rambhiya, S. J., Magar, C. S., & Deodhar, M. A. (2021). Using seawater-based Na2CO3 medium for scrubbing the CO2 released from Bio-CNG plant for enhanced biomass production of Pseudanabaena limnetica. SN Applied Sciences, 3(2), 1-17. (Link – https://link.springer.com/article/10.1007/s42452-021-04271-7)

Chaitanya Magar, Sagar Rambhiya and Manjushri Deodhar, 2019. Evaluation of CO2 Removal Efficiency of Pseudanabaena limnetica (Lemm.) Komárek Grown in Na2CO3 Enriched Seawater Medium in 60 L Airlift Flat Panel Photobioreactor. Journal of Environmental Science and Technology, 12: 186-196. DOI: 10.3923/jest.2019.186.196 (URL: https://scialert.net/abstract/?doi=jest.2019.186.196)

Need Help?